首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   604篇
  免费   94篇
  2021年   11篇
  2020年   4篇
  2019年   4篇
  2018年   12篇
  2017年   8篇
  2016年   12篇
  2015年   28篇
  2014年   28篇
  2013年   27篇
  2012年   42篇
  2011年   50篇
  2010年   26篇
  2009年   21篇
  2008年   23篇
  2007年   27篇
  2006年   29篇
  2005年   20篇
  2004年   35篇
  2003年   23篇
  2002年   35篇
  2001年   11篇
  2000年   14篇
  1999年   15篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   16篇
  1991年   17篇
  1990年   13篇
  1989年   14篇
  1988年   14篇
  1987年   13篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   7篇
  1974年   5篇
  1973年   2篇
  1972年   4篇
排序方式: 共有698条查询结果,搜索用时 15 毫秒
681.
To investigate thermal response, hydration behaviour and performance over flatwater kayaking races in tropical conditions (36.8°C and 68% rh). Five internationally-ranked subjects participated in the 2012 Surfski Ocean Racing World Cup in Guadeloupe to the “Ze Caribbean Race 2012” [i.e., a 35-km downwind race]. Core temperature (T°C) and heart rate (HR) were measured using portable telemetry units whereas water intake was deduced from backpacks absorption. The kayakers were asked to rate both their comfort sensation and thermal sensation on a scale before and after the race. The performance was related to an increase in T°C, high HR and low water intake (WI); and (2) high values of final T°C were related to high pre T°C and greater increases in T°C being obtained with low pre T°C and (3) WI being related to high pre T°C. The present study demonstrated that the fastest kayakers were those able to paddle at the highest intensities, increasing their T°C and drinking little water without any interference from thermal sensations. Water intake was positively related to pre-race T°C, which reinforces the importance of beginning surfski races with a low T°C. This study demonstrated that well-trained kayakers drinking ad libitum were able to anticipate their intensity/heat storage ratio to prevent heat illness and severe dehydration and maintain high performance.  相似文献   
682.
Polyploidization has crucial impacts on the evolution of different eukaryotic lineages including fungi, plants and animals. Recent genome data suggest that, for many polyploidization events, all duplicated chromosomes are maintained and genome reorganizations occur much later during evolution. However, newly-formed polyploid genomes are intrinsically unstable and often quickly degenerate into aneuploidy or diploidy. The transition between these two states remains enigmatic. In this study, laboratory evolution experiments were conducted to investigate this phenomenon. We show that robust tetraploidy is achieved in evolved yeast cells by increasing the abundance of Sch9—a protein kinase activated by the TORC1 (Target of Rapamycin Complex 1) and other signaling pathways. Overexpressing SCH9, but not TOR1, allows newly-formed tetraploids to exhibit evolved phenotypes and knocking out SCH9 diminishes the evolved phenotypes. Furthermore, when cells were challenged with conditions causing ancestral cells to evolve aneuploidy, tetraploidy was maintained in the evolved lines. Our results reveal a determinant role for Sch9 during the early stage of polyploid evolution.  相似文献   
683.
1. The effects of the venom and its fractions of Megascolia flavifrons have been studied on synaptic transmission and axonal excitability of the giant interneuron of the cockroach. 2. The venom does not affect axonal excitability, but blocks synaptic transmission, and induces postsynaptic depolarization with a delay. 3. Five different active fractions have been recognized. 4. Three fractions of them contain substances already identified as histamine, Thr6 bradykinin and Thr6 bradykinin-Lys-Ala (megascoliakinin). 5. Three fractions contain activities, which have not yet been chemically identified. 6. All of them, and also bradykinin block synaptic transmission; histamine was not active.  相似文献   
684.
Nuclear-mitochondrial conflict (cytonuclear incompatibility) is a specific form of Dobzhansky-Muller incompatibility previously shown to cause reproductive isolation in two yeast species. Here, we identified two new incompatible genes, MRS1 and AIM22, through a systematic study of F2 hybrid sterility caused by cytonuclear incompatibility in three closely related Saccharomyces species (S. cerevisiae, S. paradoxus, and S. bayanus). Mrs1 is a nuclear gene product required for splicing specific introns in the mitochondrial COX1, and Aim22 is a ligase encoded in the nucleus that is required for mitochondrial protein lipoylation. By comparing different species, our result suggests that the functional changes in MRS1 are a result of coevolution with changes in the COX1 introns. Further molecular analyses demonstrate that three nonsynonymous mutations are responsible for the functional differences of Mrs1 between these species. Functional complementation assays to determine when these incompatible genes altered their functions show a strong correlation between the sequence-based phylogeny and the evolution of cytonuclear incompatibility. Our results suggest that nuclear-mitochondrial incompatibility may represent a general mechanism of reproductive isolation during yeast evolution.  相似文献   
685.
686.
In an effort to find antimalarial drugs, a systematic in vitro evaluation on a chloroquine-resistant strain of Plasmodium falciparum (FcB1) was undertaken on sixty plant extracts collected in French Guiana. The ethyl acetate extract obtained from the root barks of Symphonia globulifera exhibited a strong antiplasmodial activity (97% at 10 μg/ml). The phytochemical investigation of this extract led to the isolation of nine polycyclic polyprenylated acylphloroglucinol (PPAPs) compounds and two oxidized derivatives. All compounds showed antiplasmodial activity with IC50s ranged from 2.1 to 10.1 μM. A LC/ESI-MSn study performed on polyprenylated benzophenones previously isolated from Moronobea coccinea provided a reliable method for their detection in the extract and structural elucidation.  相似文献   
687.
688.
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.  相似文献   
689.
Mechanism of activation of liver glycogen synthase by swelling.   总被引:4,自引:0,他引:4  
The mechanism linking the stimulation of liver glycogen synthesis to swelling induced either by amino acids or hypotonicity was studied in hepatocytes, in gel-filtered liver extracts, and in purified preparations of particulate glycogen to which glycogen-metabolizing enzymes are bound. High concentrations of KCl, but not of potassium glutamate, were found to inhibit glycogen synthesis in permeabilized hepatocytes. Similarly, physiological concentrations (30-50 mM) of Cl- ions were also found to inhibit synthase phosphatase in vitro, whereas 10-20 mM Cl- ions, a concentration found in swollen hepatocytes, did not inhibit synthase phosphatase. Synthase phosphatase activity was more sensitive to inhibition by Cl- ions at low (0.1%) than at high (1%) concentrations of glycogen. By contrast, 10 mM glutamate and aspartate, a concentration observed in hepatocytes incubated with glutamine or proline, stimulated synthase phosphatase in vitro. Therefore, it is proposed that the fall in intracellular Cl- concentration as well as the increase in intracellular glutamate and aspartate concentrations, that are observed in swollen hepatocytes in the presence of amino acids, are responsible, at least in part, for the stimulation of synthase phosphatase and, hence, of glycogen synthesis.  相似文献   
690.
Starting from isolated chloroplasts of the Chlamydomonas reinhardii cw 15 mutant, several mRNA-containing chloroplast subfractions, i.e. thylakoid-bound polysomes, detached polysomes or isolated RNA, were prepared and incubated in homologous and heterologous translation systems. In the reticulocyte lysate these fractions gave rise to strikingly different product patterns. A most prominent difference concerned the in-vivo rapidly labelled 32,000-dalton thylakoid polypeptide. Neither this membrane protein nor its 34,000-dalton precursor was formed when membrane-containing or free polysomes were translated, while the 34,000-dalton precursor was a main product of the RNA isolated from the same membranes. The influence of thylakoid membranes during translation was also observed in homologous translation systems with lysed chloroplasts supplemented with ATP. Membrane and soluble fractions, when translated separately, yielded product patterns which differed from each other, although the RNAs extracted from the respective fractions gave the same product patterns when translated in reticulocyte lysate; the latter included a soluble protein, the large subunit of ribulose-1,5-bisphosphate carboxylase, and a membrane protein, the 34,000-dalton precursor of the 32,000-dalton membrane protein, as major labelled translation products. These results point to a regulatory role of thylakoid membranes in the expression of chloroplast mRNA and argue against compartmentation of the chloroplast mRNAs between the soluble and membrane fractions.Abbreviation SDS sodium dodecyl sulfate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号