首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9297篇
  免费   867篇
  国内免费   17篇
  2023年   39篇
  2021年   160篇
  2020年   124篇
  2019年   155篇
  2018年   208篇
  2017年   194篇
  2016年   275篇
  2015年   497篇
  2014年   498篇
  2013年   612篇
  2012年   741篇
  2011年   669篇
  2010年   442篇
  2009年   421篇
  2008年   576篇
  2007年   524篇
  2006年   457篇
  2005年   425篇
  2004年   391篇
  2003年   356篇
  2002年   329篇
  2001年   189篇
  2000年   173篇
  1999年   138篇
  1998年   84篇
  1997年   68篇
  1996年   54篇
  1995年   77篇
  1994年   44篇
  1993年   53篇
  1992年   88篇
  1991年   76篇
  1990年   79篇
  1989年   84篇
  1988年   80篇
  1987年   77篇
  1986年   64篇
  1985年   74篇
  1984年   52篇
  1983年   44篇
  1982年   34篇
  1980年   29篇
  1979年   47篇
  1978年   44篇
  1977年   29篇
  1976年   41篇
  1975年   32篇
  1974年   32篇
  1973年   27篇
  1972年   25篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
21.
22.
6 normal subjects received two times of 2 hr euglycemic glucose clamp studies (insulin infusion rate 40 mU/M2/min) one with and the other without somatostatin (SRIF) infusion (500 microgram/hr). Serum C-peptide and glucagon levels were measured during clamp to study the sensitivity of pancreatic alpha and beta cells to the suppressive effects of exogenous hyperinsulinemia during normoglycemia in normal subjects and to find whether SRIF had any modulative effects on endocrine pancreas secretion at the status of hyperinsulinemia. The results showed that in normal man the degree of suppression of pancreatic glucagon secretion by hyperinsulinemia (approximately 100 uU/ml) during euglycemic glucose clamp without SRIF infusion was less than that of C-peptide with mean value of 62 +/- 4% of basal glucagon remained at the end of clamp study; while only about 30 +/- 2% of basal C-peptide concentrations remained. But during SRIF infused glucose clamp studies (SRIF was infused from 60 to 120 min), 32 +/- 2% of mean basal C-peptide concentrations and 38 +/- 6% of mean basal glucagon concentrations left at the end of 2 hr clamp studies when serum insulin level was about 100 uU/ml. For the glucose infusion rate (M value), it was significantly greater in our normal subjects in response to insulin + SRIF as compared to insulin alone (12.0 + 0.9 vs 8.8 +/- 1.4; P less than 0.01). We concluded: during hyperinsulinemia (100 uU/ml), the sensitivity of pancreatic alpha cells to insulin seems less than that of beta cells in normal man at normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
23.
The effect of growth phase on the membrane-associated phospholipid biosynthetic enzymes CDP-diacylglycerol synthase, phosphatidylserine synthase, phosphatidylinositol synthase, and the phospholipid N-methyltransferases in wild-type Saccharomyces cerevisiae was examined. Maximum activities were found in the exponential phase of cells grown in complete synthetic medium. As cells entered the stationary phase of growth, the activities of the CDP-diacylglycerol synthase, phosphatidylserine synthase, and the phospholipid N-methyltransferases decreased 2.5- to 5-fold. The subunit levels of phosphatidylserine synthase and the cytoplasmic-associated enzyme inositol-1-phosphate synthase were not significantly affected by the growth phase. When grown in medium supplemented with inositol-choline, cells in the exponential phase of growth had reduced CDP-diacylglycerol synthase, phosphatidylserine synthase, and phospholipid N-methyltransferase activities, with repressed subunit levels of phosphatidylserine synthase and inositol-1-phosphate synthase compared with cells grown without inositol-choline. Enzyme activity levels remained reduced in the stationary phase of growth of cells supplemented with inositol-choline. The phosphatidylserine synthase and inositol-1-phosphate synthase subunit levels, however, were depressed. Phosphatidylinositol synthase (activity and subunit) was not affected by growth in medium supplemented with or without inositol-choline or the growth phase of the culture. The phospholipid composition of cells in the exponential and stationary phase of growth was also examined. The phosphatidylinositol to phosphatidylserine ratio doubled in stationary-phase cells. The phosphatidylcholine to phosphatidylethanolamine ratio was not significantly affected by the growth phase of cells.  相似文献   
24.
25.
Examination of the proteins synthesized by isolated mitochondria, chloroplasts, or proplastids from maize tissues showed that a heat treatment at 40 degrees C does not induce or enhance the synthesis of any protein when compared to preparations treated at the control temperature of 28 degrees C. These observations are consistent with the results obtained by labeling proteins in vivo under sterile conditions. In vivo labeling in the presence of cycloheximide during heat shock showed no heat shock protein synthesis. Labeling in the presence of chloramphenicol during heat shock showed a similar heat shock protein pattern as in the absence of the inhibitor. It is concluded that maize organelles do not synthesize heat shock proteins and that, if present, they may be due to bacterial contamination.  相似文献   
26.
A potentially important source of cholesterol secreted in bile is cholesterol-rich lipoproteins. However, the fate of the cholesterol carried in these lipoproteins after hepatic uptake has not been investigated. We harvested an apoE- and cholesterol-rich lipoprotein fraction (d 1.02-1.06 g/ml) from hypercholesterolemic rats and examined the acute effects of these lipoproteins on hepatic cholesterol metabolism, very low density lipoprotein (VLDL) secretion, and biliary lipid secretion. Administration of a lipoprotein bolus (20 mg of cholesterol) to rats resulted in a significant decrease in 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and a significant increase in acyl-coenzyme A:cholesterol acyltransferase activity over controls at 1 hr. Hepatic cholesteryl ester content increased 400% with no change in hepatic free cholesterol content or biliary cholesterol secretion. These cholesterol-rich lipoproteins delivered in the isolated perfused liver effected a fivefold increase in hepatic VLDL secretion with no change in composition. Therefore, cholesterol-rich lipoproteins do not acutely alter biliary cholesterol secretion. Rather, the majority of the cholesterol delivered to the liver in these lipoproteins is either esterified and stored as cholesteryl ester or resecreted as free and esterified cholesterol in hepatic VLDL.  相似文献   
27.
Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous [3H]phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of [3H]phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that [3H]phosphatidylinositol 4-phosphate is a better substrate than [3H]phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.  相似文献   
28.
Concurrent activation of vasoactive intestinal peptide and alpha 1-adrenergic receptor resulted in greater than 20-fold increases in pineal cAMP and cGMP accumulation. We now find that an intoxicating level of ethanol (0.2%, 34 mM) inhibits greater than 50% the large increases in pineal cAMP and cGMP produced by concurrent treatment with vasoactive intestinal peptide and phenylephrine. The potency of the various alcohols tested was directly related to their chain length. This inhibition appears to be specific since a five-fold higher concentration of ethanol does not inhibit the stimulation of cAMP and cGMP accumulation produced by concurrent treatment with isoproterenol and phenylephrine. Accordingly, it seems that one mechanism of action of ethanol on neural function may be its ability to selectively inhibit ethanol-sensitive integrative mechanisms which regulate cyclic nucleotides.  相似文献   
29.
Cardiac glycosides stimulate phospholipase C activity in rat pinealocytes   总被引:1,自引:0,他引:1  
Ouabain and related cardiac glycosides stimulate phospholipase C activity 5-fold in rat pinealocytes. The combined treatment of ouabain and norepinephrine, which also stimulates phospholipase C, produces an additive effect. The effects of either ouabain or norepinephrine are blocked by EGTA. However, there are notable differences. The stimulatory effect of ouabain is lost when extracellular Na+ is reduced to 20 mM and is not blocked by prazosin. In contrast, the stimulatory effect of norepinephrine is not blocked when extracellular Na+ is reduced to 20 mM but is blocked by prazosin. Ouabain appears to increase phospholipase C activity through a mechanism involving inhibition of Na+,K+-ATPase, and an accumulation of intracellular Na+ and Ca2+, not involving alpha 1-adrenoceptors. These findings raise the possibility that activation of phospholipase C might be a more general effect of cardiac glycosides.  相似文献   
30.
A two-stage process for the enzymatic conversion of cellulose to ethanol is proposed as an alternative to currently incomplete and relatively slow enzymatic conversion processes employing natural insoluble cellulose. This alternative approach is designed to promote faster and more complete conversion of cellulose to fermentable sugars through the use of a homogeneous enzymatic hydrolysis reaction. Cellulose is chemically dissolved in the first stage to form water-soluble cellulose acetate (WSCA). The WSCA is then converted to ethanol in a simultaneous saccharification-fermentation with Pestal-otiopsis westerdijkii enzymes (containing cellulolytic and acetyl esterase components) and yeast.Water-soluble cellulose acetate was successfully prepared from purified wood cellulose (Solka Floe) and chemical reagents. Enzyme pretreatment of WSCAto form metabolizable sugars was a necessary step in achieving practical conversion of WSCA to ethanol using yeast. The results showed that WSCA has a low enzyme requirement and a high convertibility to reducing sugars with enzymes from P. westerdijkii fungus. Pestalotiopsis westerdijkii enzymes were found to be superior to enzymes from Trichoderma viride in producing metabolizable glucose from WSCA. The yeast utilized 55-70% of the hydrolyzate sugars that were produced by P. westerrlijkii enzymes on WSCA and produced ethanol. The acetate that was liberated into solution by the action of acetyl esterase enzymes on WSCA was found to have a stimulatory effect on ethanol production in yeast. This is an important feature that can be used to advantage in manipulating the conversion to maximize the production of ethanol. Hence, the simultaneous saccharification-fermentation of WSCA to ethanol using P. westerdijkii enzymes and yeast has features that are highly desirable for developing an economical cellulose conversion process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号