首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1450篇
  免费   245篇
  国内免费   1篇
  2021年   25篇
  2020年   12篇
  2016年   18篇
  2015年   40篇
  2014年   32篇
  2013年   53篇
  2012年   68篇
  2011年   62篇
  2010年   33篇
  2009年   40篇
  2008年   46篇
  2007年   76篇
  2006年   50篇
  2005年   60篇
  2004年   54篇
  2003年   52篇
  2002年   44篇
  2001年   49篇
  2000年   50篇
  1999年   29篇
  1998年   22篇
  1997年   25篇
  1996年   18篇
  1995年   13篇
  1993年   18篇
  1992年   31篇
  1991年   29篇
  1990年   35篇
  1989年   28篇
  1988年   28篇
  1987年   34篇
  1986年   16篇
  1985年   31篇
  1984年   17篇
  1983年   23篇
  1982年   17篇
  1981年   15篇
  1980年   11篇
  1979年   22篇
  1978年   26篇
  1977年   25篇
  1976年   19篇
  1975年   24篇
  1974年   25篇
  1973年   31篇
  1972年   20篇
  1971年   12篇
  1970年   12篇
  1969年   14篇
  1968年   11篇
排序方式: 共有1696条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
75.
76.
DNA synthesis in regenerating liver was studied to determine whether the onset of stimulated DNA synthesis preceded the onset of increased incorporation of thymidine into DNA. Thymidine incorporation into hepatic DNA was not stimulated 15 h after operation, but was stimulated after 18 h; peak stimulation occurred 30 h after operation. Thymidine kinase activity was stimulated 24 h after operation; highest kinase activity was observed at 36 h. The onset of stimulated DNA synthesis was estimated by following the incorporation of labeled aspartic acid, sodium formate, adenine or orotic acid into appropriate DNA bases, viz., thymine, adenine, adenine or cytosine, respectively. Incorporation of adenine and orotic acid was stimulated between 15 h and 18 h after operation; incorporation of aspartic acid and sodium formate was stimulated between 18 h and 21 h after operation.The incorporation of thymidine into DNA was accelerated by stress stimulus and was inhibited by hydrocortisone. Changes in thymidine kinase activity also were correspondingly accelerated or delayed. Incorporation of labeled thymidine, adenine, formate, orotic acid or thymine into appropriate DNA bases, viz., thymine, adenine, adenine, cytosine or thymine, respectively, was stimulated by stress stimulus or was inhibited by hydrocortisone.It was concluded from these data that stimulation of DNA synthesis and of thymidine incorporation into DNA was essentially synchronized in regenerating rat liver. Results from this study were compared with results from similar studies in 2 other tissues, and the limitations, attendant with using thymidine incorporation into DNA as an indicator of stimulated DNA synthesis, were discussed.  相似文献   
77.
78.
R67 dihydrofolate reductase (R67 DHFR) is a plasmid‐encoded enzyme that confers resistance to the antibacterial drug trimethoprim. R67 DHFR is a tetramer with a single active site that is unusual as both cofactor and substrate are recognized by symmetry‐related residues. Such promiscuity has limited our previous efforts to differentiate ligand binding by NMR. To address this problem, we incorporated fluorine at positions 4, 5, 6, or 7 of the indole rings of tryptophans 38 and 45 and characterized the spectra to determine which probe was optimal for studying ligand binding. Two resonances were observed for all apo proteins. Unexpectedly, the W45 resonance appeared broad, and truncation of the disordered N‐termini resulted in the appearance of one sharp W45 resonance. These results are consistent with interaction of the N‐terminus with W45. Binding of the cofactor broadened W38 for all fluorine probes, whereas substrate, dihydrofolate, binding resulted in the appearance of three new resonances for 4‐ and 5‐fluoroindole labeled protein and severe line broadening for 6‐ and 7‐fluoroindole R67 DHFR. W45 became slightly broader upon ligand binding. With only two peaks in the 19F NMR spectra, our data were able to differentiate cofactor and substrate binding to the single, symmetric active site of R67 DHFR and yield binding affinities.  相似文献   
79.
North Carolina, USA, is the southernmost extent of the American black duck's (Anas rubripes) breeding range; however, little is known about their nesting ecology in this region. We located and monitored 140 nesting black ducks over 2 years (2017–2018) to quantify preferred nesting habitat and assess nesting productivity within coastal North Carolina. We located nests in brackish marshes (75%) and man-made dredge spoil islands (25%) at a density of 1 nest/22 ha. Black ducks selected high marsh and nested an average of 21.81 m from open water at a mean elevation of 1.36 m. In preferred nesting habitat, visual obstruction readings were 0.50 m with a maximum mean vegetation height of 0.81 m and land cover consisted largely of grasses (84.6%). Apparent nest success rates varied from 31% (2017) to 63% (2018) across years. The majority (72.2%) of variability in nest success was best predicted by nest location (mainland marsh, natural island, or spoil island), vegetation density, maximum vegetation height, and year. Management for breeding black ducks in coastal North Carolina should focus on promoting selected nesting habitat and reducing nest predators. Prescribed burns, used to set back succession on spoil islands and in brackish marshes should be conducted in the winter or in the early growing season not to exceed the twenty-fifth quantile date of black duck nest initiation (2 Apr). © 2021 The Wildlife Society.  相似文献   
80.
Since the initial report of the novel Coronavirus Disease 2019 (COVID-19) emanating from Wuhan, China, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally. While the effects of SARS-CoV-2 infection are not completely understood, there appears to be a wide spectrum of disease ranging from mild symptoms to severe respiratory distress, hospitalization, and mortality. There are no Food and Drug Administration (FDA)-approved treatments for COVID-19 aside from remdesivir; early efforts to identify efficacious therapeutics for COVID-19 have mainly focused on drug repurposing screens to identify compounds with antiviral activity against SARS-CoV-2 in cellular infection systems. These screens have yielded intriguing hits, but the use of nonhuman immortalized cell lines derived from non-pulmonary or gastrointestinal origins poses any number of questions in predicting the physiological and pathological relevance of these potential interventions. While our knowledge of this novel virus continues to evolve, our current understanding of the key molecular and cellular interactions involved in SARS-CoV-2 infection is discussed in order to provide a framework for developing the most appropriate in vitro toolbox to support current and future drug discovery efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号