首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1465篇
  免费   243篇
  2021年   25篇
  2020年   12篇
  2016年   16篇
  2015年   42篇
  2014年   40篇
  2013年   54篇
  2012年   69篇
  2011年   65篇
  2010年   40篇
  2009年   43篇
  2008年   46篇
  2007年   73篇
  2006年   50篇
  2005年   58篇
  2004年   53篇
  2003年   52篇
  2002年   44篇
  2001年   51篇
  2000年   50篇
  1999年   29篇
  1998年   21篇
  1997年   25篇
  1996年   18篇
  1995年   12篇
  1993年   18篇
  1992年   31篇
  1991年   30篇
  1990年   36篇
  1989年   28篇
  1988年   28篇
  1987年   34篇
  1986年   16篇
  1985年   31篇
  1984年   17篇
  1983年   23篇
  1982年   18篇
  1981年   15篇
  1980年   10篇
  1979年   22篇
  1978年   26篇
  1977年   25篇
  1976年   19篇
  1975年   24篇
  1974年   26篇
  1973年   31篇
  1972年   20篇
  1971年   11篇
  1970年   12篇
  1969年   14篇
  1968年   11篇
排序方式: 共有1708条查询结果,搜索用时 17 毫秒
121.
This study was conducted to evaluate the difference between active and passive recovery methods during successive suicide runs by Division I women's collegiate basketball athletes (n = 14). Testing consisted of sprinting suicides on the basketball court using both traditional (short) and reverse-sequence (long) protocols. Two 90-second recovery methods were used, passive (standing still) and active (slow self-paced jogging). Although successive run time was reduced by a mean of 0.55 seconds after passive recovery relative to active, it did not reach significance (p = 0.09). Likewise, the difference between long and short line versions was nonsignificant (p = 0.41). Therefore, neither line sequence nor 90-second recovery technique appears to influence subsequent run time when performing 2 maximal-effort suicides.  相似文献   
122.
A method for the comprehensive proteomic analysis of membrane proteins   总被引:23,自引:0,他引:23  
We describe a method that allows for the concurrent proteomic analysis of both membrane and soluble proteins from complex membrane-containing samples. When coupled with multidimensional protein identification technology (MudPIT), this method results in (i) the identification of soluble and membrane proteins, (ii) the identification of post-translational modification sites on soluble and membrane proteins, and (iii) the characterization of membrane protein topology and relative localization of soluble proteins. Overlapping peptides produced from digestion with the robust nonspecific protease proteinase K facilitates the identification of covalent modifications (phosphorylation and methylation). High-pH treatment disrupts sealed membrane compartments without solubilizing or denaturing the lipid bilayer to allow mapping of the soluble domains of integral membrane proteins. Furthermore, coupling protease protection strategies to this method permits characterization of the relative sidedness of the hydrophilic domains of membrane proteins.  相似文献   
123.
Antimicrobial polypeptides of the human colonic epithelium   总被引:4,自引:0,他引:4  
Howell SJ  Wilk D  Yadav SP  Bevins CL 《Peptides》2003,24(11):1763-1770
The lumen of the human colon is heavily colonized with microbes, but infections across its epithelial surface are infrequent. To address the hypothesis that antimicrobial polypeptides contribute to the barrier function of colonic epithelial cells, we examined cellular extracts from non-inflamed colonic mucosa using an antimicrobial assay. This approach yielded five polypeptides: three antimicrobials were previously identified as ribosomal polypeptides (L30, S19 and ubiquicidin), and two were members of the histone family (H1.5 and H2B). All exhibited bactericidal activity against Escherichia coli, and with the exception of S19, had been isolated by others based on their potent antimicrobial activity in other cells and tissues. These polypeptides normally reside inside cells and are proposed to contribute to the formation of the functional antimicrobial barrier of the colonic epithelium.  相似文献   
124.
Borrelia burgdorferi, a spirochaete that causes Lyme borreliosis, contains 21 linear and circular plasmids thought to be important for survival in mammals or ticks. Our results demonstrate that the gene BBE22 encoding a nicotinamidase is capable of replacing the requirement for the 25 kb linear plasmid lp25 during mammalian infection. Transformation of B. burgdorferi lacking lp25 with a shuttle vector containing the lp25 gene BBE22 (pBBE22) restored infectivity in mice to a level comparable to that of wild-type Borrelia. This complementation also restored the growth and host adaptation of lp25-B. burgdorferi in dialysis membrane chambers (DMCs) implanted in rats. A single Cys to Ala conversion at the putative active site of BBE22 abrogated the ability of pBBE22 to re-establish infectivity or growth in DMCs. Additional Salmonella typhimurium complementation studies and enzymatic analysis demonstrated that the BBE22 gene product has nicotinamidase activity and is most probably required for the biosynthesis of NAD. These results indicate that some plasmid-encoded products fulfil physiological functions required in the enzootic cycle of pathogenic Borrelia.  相似文献   
125.
Mannose trimming is not only essential for N-glycan maturation in mammalian cells but also triggers degradation of misfolded glycoproteins. The crystal structure of the class I alpha1, 2-mannosidase that trims Man(9)GlcNAc(2) to Man(8)GlcNAc(2 )isomer B in the endoplasmic reticulum of Saccharomyces cerevisiae reveals a novel (alphaalpha)(7)-barrel in which an N-glycan from one molecule extends into the barrel of an adjacent molecule, interacting with the essential acidic residues and calcium ion. The observed protein-carbohydrate interactions provide the first insight into the catalytic mechanism and specificity of this eukaryotic enzyme family and may be used to design inhibitors that prevent degradation of misfolded glycoproteins in genetic diseases.  相似文献   
126.
Two putative Methanococcus jannaschii isocitrate dehydrogenase genes, MJ1596 and MJ0720, were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze the NAD- and NADP-dependent oxidative decarboxylation of DL-threo-3-isopropylmalic acid, threo-isocitrate, erythro-isocitrate, and homologs of threo-isocitrate. Neither enzyme was found to use any of the isomers of isocitrate as a substrate. The protein product of the MJ1596 gene, designated AksF, catalyzed the NAD-dependent decarboxylation of intermediates in the biosynthesis of 7-mercaptoheptanoic acid, a moiety of methanoarchaeal coenzyme B (7-mercaptoheptanylthreonine phosphate). These intermediates included (-)-threo-isohomocitrate [(-)-threo-1-hydroxy-1,2, 4-butanetricarboxylic acid], (-)-threo-iso(homo)(2)citrate [(-)-threo-1-hydroxy-1,2,5-pentanetricarboxylic acid], and (-)-threo-iso(homo)(3)citrate [(-)-threo-1-hydroxy-1,2, 6-hexanetricarboxylic acid]. The protein product of MJ0720 was found to be alpha-isopropylmalate dehydrogenase (LeuB) and was found to catalyze the NAD-dependent decarboxylation of one isomer of DL-threo-isopropylmalate to 2-ketoisocaproate; thus, it is involved in the biosynthesis of leucine. The AksF enzyme proved to be thermostable, losing only 10% of its enzymatic activity after heating at 100 degrees C for 10 min, whereas the LeuB enzyme lost 50% of its enzymatic activity after heating at 80 degrees C for 10 min.  相似文献   
127.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   
128.
The hallmark of acute allograft rejection is infiltration of the inflamed graft by circulating leukocytes. We studied the role of fractalkine (FKN) and its receptor, CX(3)CR1, in allograft rejection. FKN expression was negligible in nonrejecting cardiac isografts but was significantly enhanced in rejecting allografts. At early time points, FKN expression was particularly prominent on vascular tissues and endothelium. As rejection progressed, FKN expression was further increased, with prominent anti-FKN staining seen around vessels and on cardiac myocytes. To determine the capacity of FKN on endothelial cells to promote leukocyte adhesion, we performed adhesion assays with PBMC and monolayers of TNF-alpha-activated murine endothelial cells under low-shear conditions. Treatment with either anti-FKN or anti-CX(3)CR1-blocking Ab significantly inhibited PBMC binding, indicating that a large proportion of leukocyte binding to murine endothelium occurs via the FKN and CX(3)CR1 adhesion receptors. To determine the functional significance of FKN in rejection, we treated cardiac allograft recipients with daily injections of anti-CX(3)CR1 Ab. Treatment with the anti-CX(3)CR1 Ab significantly prolonged allograft survival from 7 +/- 1 to 49 +/- 30 days (p < 0.0008). These studies identify a critical role for FKN in the pathogenesis of acute rejection and suggest that FKN may be a useful therapeutic target in rejection.  相似文献   
129.
Matrix metalloproteinases (MMPs) are a family of secreted or transmembrane proteins that can degrade all the proteins of the extracellular matrix and have been implicated in many abnormal physiological conditions including arthritis and cancer metastasis. Recently we have shown for the first time that the human MMP-1 gene is a p53 target gene subject to repression by wild type p53 (Sun, Y., Sun, Y. I., Wenger, L., Rutter, J. L., Brinckerhoff, C. E., and Cheung, H. S. (1999) J. Biol. Chem. 274, 11535-11540). Here, we report that cotransfection of fibroblast-like synoviocytes with p53 expression and hMMP13CAT reporter plasmids revealed that (i) hMMP13, another member of the human MMP family, was down-regulated by wild type p53, whereas all six of the p53 mutants tested lost the wild type p53 repressor activity in fibroblast-like synoviocytes; (ii) this repression of hMMP-13 gene expression by wild type p53 could be reversed by overexpression of p53 mutants p53-143A, p53-248W, p53-273H, and p53-281G; (iii) the dominant effect of p53 mutants over wild type p53 appears to be a promoter- and mutant-specific effect. An intriguing finding was that p53 mutant p53-281G could conversely stimulate the promoter activity of hMMP13 up to 2-4-fold and that it was dominant over wild type p53. Northern analysis confirmed these findings. Although the significance of these findings is currently unknown, they suggest that in addition to the effect of cytokines activation, the gene expression of hMMP13 could be dysregulated during the disease progression of rheumatoid arthritis (or cancer) associated with p53 inactivation. Since hMMP13 is 5-10 times as active as hMMP1 in its ability to digest type II collagen, the dysregulation or up-modulation of MMP13 gene expression due to the inactivation of p53 may contribute to the joint degeneration in rheumatoid arthritis.  相似文献   
130.
Structure and function of S-adenosylhomocysteine hydrolase   总被引:6,自引:0,他引:6  
In mammals, S-adenosylhomocysteine hydrolase (AdoHcyase) is the only known enzyme to catalyze the breakdown of S-adenosylhomocysteine (AdoHcy) to homocysteine and adenosine. AdoHcy is the product of all adenosylmethionine (AdoMet)-dependent biological transmethylations. These reactions have a wide range of products, and are common in all facets of biometabolism. As a product inhibitor, elevated levels of AdoHcy suppress AdoMet-dependent transmethylations. Thus, AdoHcyase is a regulator of biological transmethylation in general. The three-dimensional structure of AdoHcyase complexed with reduced nicotinamide adenine dinucleotide phosphate (NADH) and the inhibitor (1′R, 2′S, 3′R)-9-(2′,3′-dihyroxycyclopenten-1-yl)adenine (DHCeA) was solved by a combination of the crystallographic direct methods program, SnB, to determine the selenium atom substructure and by treating the multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. The enzyme architecture resembles that observed for NAD-dependent dehydrogenases, with the catalytic domain and the cofactor binding domain each containing a modified Rossmann fold. The two domains form a deep active site cleft containing the cofactor and bound inhibitor molecule. A comparison of the inhibitor complex of the human enzyme and the structure of the rat enzyme, solved without inhibitor, suggests that a 17° rigid body movement of the catalytic domain occurs upon inhibitor/substrate binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号