首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6939篇
  免费   777篇
  国内免费   4篇
  2021年   62篇
  2018年   61篇
  2017年   51篇
  2016年   104篇
  2015年   167篇
  2014年   189篇
  2013年   254篇
  2012年   323篇
  2011年   357篇
  2010年   238篇
  2009年   208篇
  2008年   333篇
  2007年   315篇
  2006年   319篇
  2005年   307篇
  2004年   354篇
  2003年   308篇
  2002年   303篇
  2001年   95篇
  2000年   106篇
  1999年   139篇
  1998年   122篇
  1997年   71篇
  1996年   67篇
  1995年   80篇
  1994年   72篇
  1993年   71篇
  1992年   108篇
  1991年   99篇
  1990年   101篇
  1989年   93篇
  1988年   77篇
  1987年   80篇
  1986年   84篇
  1985年   89篇
  1984年   77篇
  1983年   77篇
  1982年   92篇
  1981年   79篇
  1980年   89篇
  1979年   81篇
  1978年   68篇
  1977年   86篇
  1976年   73篇
  1975年   66篇
  1974年   92篇
  1973年   82篇
  1972年   49篇
  1969年   55篇
  1968年   47篇
排序方式: 共有7720条查询结果,搜索用时 296 毫秒
991.
The orientation of combs in traditional beehives is extremely important for obtaining a marketable honey product. However, the factors that could determine comb orientation in traditional hives and the possibilities of inducing honey bees, Apis mellifera (L.), to construct more desirable combs have not been investigated. The goal of this experiment was to determine whether guide marks in traditional hives can induce bees to build combs of a desired orientation. Thirty-two traditional hives of uniform dimensions were used in the experiment. In 24 hives, ridges were formed on the inner surfaces of the hives with fermented mud to obtain different orientations, circular, horizontal, and spiral, with eight replicates of each treatment. In the remaining eight control hives, the inner surface was left smooth. Thirty-two well-established honey bee colonies from other traditional hives were transferred to the prepared hives. The colonies were randomly assigned to the four treatment groups. The manner of comb construction in the donor and experimental hives was recorded. The results showed that 22 (91.66%) of the 24 colonies in the treated groups built combs along the ridges provided, whereas only 2 (8.33%) did not. Comb orientation was strongly associated with the type of guide marks provided. Moreover, of the 18 colonies that randomly fell to patterns different from those of their previous nests, 17 (94.4%) followed the guide marks provided, irrespective of the comb orientation type in their previous nest. Thus, comb orientation appears to be governed by the inner surface pattern of the nest cavity. The results suggest that even in fixed-comb hives, honey bees can be guided to build combs with orientations suitable to honey harvesting, without affecting the colonies.  相似文献   
992.
Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an “emergency shutdown” system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.  相似文献   
993.
994.
The interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that inhibits infection by influenza virus and many other pathogenic viruses. IFITM3 prevents endocytosed virus particles from accessing the host cytoplasm although little is known regarding its regulatory mechanisms. Here we demonstrate that IFITM3 localization to and antiviral remodeling of endolysosomes is differentially regulated by S-palmitoylation and lysine ubiquitination. Although S-palmitoylation enhances IFITM3 membrane affinity and antiviral activity, ubiquitination decreases localization with endolysosomes and decreases antiviral activity. Interestingly, autophagy reportedly induced by IFITM3 expression is also negatively regulated by ubiquitination. However, the canonical ATG5-dependent autophagy pathway is not required for IFITM3 activity, indicating that virus trafficking from endolysosomes to autophagosomes is not a prerequisite for influenza virus restriction. Our characterization of IFITM3 ubiquitination sites also challenges the dual-pass membrane topology predicted for this protein family. We thus evaluated topology by N-linked glycosylation site insertion and protein lipidation mapping in conjunction with cellular fractionation and fluorescence imaging. Based on these studies, we propose that IFITM3 is predominantly an intramembrane protein where both the N and C termini face the cytoplasm. In sum, by characterizing S-palmitoylation and ubiquitination of IFITM3, we have gained a better understanding of the trafficking, activity, and intramembrane topology of this important IFN-induced effector protein.  相似文献   
995.
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low‐ compared to high‐fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high‐ and low‐fitness individuals and was greater among the low‐fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits.  相似文献   
996.
997.
AX Santos  H Riezman 《FEBS letters》2012,586(18):2858-2867
Lipids are essential eukaryotic cellular constituents. Lipid metabolism has a strong impact on cell physiology, and despite good progress in this area, many important basic questions remain unanswered concerning the functional diversity of lipid species and on the mechanisms that cells employ to sense and adjust their lipid composition. Combining convenient experimental tractability, a large degree of conservation of metabolic pathways with other eukaryotes and the relative simplicity of its genome, proteome and lipidome, yeast represents the most advantageous model organism for studying lipid homeostasis and function. In this review we will focus on the importance of yeast as a model organism and some of the innovative advantages for the lipid research field.  相似文献   
998.
999.
Gap junctions are key components underpinning multicellularity. They provide cell to cell channel pathways that enable direct intercellular communication and cellular coordination in tissues and organs. The channels are constructed of a family of connexin (Cx) membrane proteins. They oligomerize inside the cell, generating hemichannels (connexons) composed of six subunits arranged around a central channel. After transfer to the plasma membrane, arrays of Cx hemichannels (CxHcs) interact and couple with partners in neighboring attached cells to generate gap junctions. Cx channels have been studied using a range of technical approaches. Short peptides corresponding to sequences in the extra- and intracellular regions of Cxs were used first to generate epitope-specific antibodies that helped studies on the organization and functions of gap junctions. Subsequently, the peptides themselves, especially Gap26 and -27, mimetic peptides derived from each of the two extracellular loops of connexin43 (Cx43), a widely distributed Cx, have been extensively applied to block Cx channels and probe the biology of cell communication. The development of a further series of short peptides mimicking sequences in the intracellular loop, especially the extremity of the intracellular carboxyl tail of Cx43, followed. The primary inhibitory action of the peptidomimetics occurs at CxHcs located at unapposed regions of the cell’s plasma membrane, followed by inhibition of cell coupling occurring across gap junctions. CxHcs respond to a range of environmental conditions by increasing their open probability. Peptidomimetics provide a way to block the actions of CxHcs with some selectivity. Furthermore, they are increasingly applied to address the pathological consequences of a range of environmental stresses that are thought to influence Cx channel operation. Cx peptidomimetics show promise as candidates in developing new therapeutic approaches for containing and reversing damage inflicted on CxHcs, especially in hypoxia and ischemia in the heart and in brain functions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号