首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6096篇
  免费   465篇
  国内免费   493篇
  2024年   8篇
  2023年   75篇
  2022年   81篇
  2021年   310篇
  2020年   221篇
  2019年   249篇
  2018年   241篇
  2017年   208篇
  2016年   307篇
  2015年   388篇
  2014年   484篇
  2013年   492篇
  2012年   535篇
  2011年   474篇
  2010年   295篇
  2009年   255篇
  2008年   308篇
  2007年   271篇
  2006年   199篇
  2005年   161篇
  2004年   161篇
  2003年   143篇
  2002年   123篇
  2001年   107篇
  2000年   99篇
  1999年   106篇
  1998年   72篇
  1997年   63篇
  1996年   42篇
  1995年   67篇
  1994年   58篇
  1993年   62篇
  1992年   70篇
  1991年   49篇
  1990年   38篇
  1989年   30篇
  1988年   29篇
  1987年   17篇
  1986年   14篇
  1985年   23篇
  1984年   12篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   18篇
  1978年   8篇
  1976年   7篇
  1975年   5篇
  1972年   5篇
排序方式: 共有7054条查询结果,搜索用时 62 毫秒
981.
Macroautophagy/autophagy has emerged as a resistance mechanism to anticancer drug treatments that induce metabolic stress. Certain tumors, including a subset of KRAS-mutant NSCLCs have been shown to be addicted to autophagy, and potentially vulnerable to autophagy inhibition. Currently, autophagy inhibition is being tested in the clinic as a therapeutic component for tumors that utilize this degradation process as a drug resistance mechanism. The current study provides evidence that HSP90 (heat shock protein 90) inhibition diminishes the expression of ATG7, thereby impeding the cellular capability of mounting an effective autophagic response in NSCLC cells. Additionally, an elevation in the expression level of CASP9 (caspase 9) prodomain in KRAS-mutant NSCLC cells surviving HSP90 inhibition appears to serve as a cell survival mechanism. Initial characterization of this survival mechanism suggests that the altered expression of CASP9 is mainly ATG7 independent; it does not involve the apoptotic activity of CASP9; and it localizes to a late endosomal and pre-lysosomal phase of the degradation cascade. HSP90 inhibitors are identified here as a pharmacological approach for targeting autophagy via destabilization of ATG7, while an induced expression of CASP9, but not its apoptotic activity, is identified as a resistance mechanism to the cellular stress brought about by HSP90 inhibition.  相似文献   
982.
Accumulating evidences showed metformin and berberine, well‐known glucose‐lowering agents, were able to inhibit mitochondrial electron transport chain at complex I. In this study, we aimed to explore the antihyperglycaemic effect of complex I inhibition. Rotenone, amobarbital and gene silence of NDUFA13 were used to inhibit complex I. Intraperitoneal glucose tolerance test and insulin tolerance test were performed in db/db mice. Lactate release and glucose consumption were measured to investigate glucose metabolism in HepG2 hepatocytes and C2C12 myotubes. Glucose output was measured in primary hepatocytes. Compound C and adenoviruses expressing dominant negative AMP‐activated protein kinase (AMPK) α1/2 were exploited to inactivate AMPK pathway. Cellular NAD+/NADH ratio was assayed to evaluate energy transforming and redox state. Rotenone ameliorated hyperglycaemia and insulin resistance in db/db mice. It induced glucose consumption and glycolysis and reduced hepatic glucose output. Rotenone also activated AMPK. Furthermore, it remained effective with AMPK inactivation. The enhanced glycolysis and repressed gluconeogenesis correlated with a reduction in cellular NAD+/NADH ratio, which resulted from complex I suppression. Amobarbital, another representative complex I inhibitor, stimulated glucose consumption and decreased hepatic glucose output in vitro, too. Similar changes were observed while expression of NDUFA13, a subunit of complex I, was knocked down with gene silencing. These findings reveal mitochondrial complex I emerges as a key drug target for diabetes treatment. Inhibition of complex I improves glucose homoeostasis via non‐AMPK pathway, which may relate to the suppression of the cellular NAD+/NADH ratio.  相似文献   
983.

Objectives

Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti‐inflammatory, anti‐oxidant and anti‐cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells.

Materials and methods

Cell proliferation and cell cycle distribution were measured by water‐soluble tetrazolium‐1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin‐6 (IL‐6)‐inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays.

Results

Capillarisin inhibited androgen‐independent DU145 and androgen‐dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP‐2, and MMP‐9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL‐6‐inducible STAT3 activation in DU145 and LNCaP cells.

Conclusions

Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP‐2, MMP‐9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL‐6‐inducible STAT3 activation.
  相似文献   
984.
Nitric oxide (NO) dysfunction has been found to be an important factor in both the development and progression of diabetic complications due to its many roles in the vascular system. Multifunctional compounds with hypoglycemic and endothelial protective action will be promising agents for the treatment of diabetes and its complications. In this study, a series of novel NO-donating sitagliptin derivatives and relevant metabolites were synthesized and evaluated as potential multifunctional hypoglycemic agents. All of synthetic compounds shown remarkable inhibitory activity against dipeptidyl peptidase IV (DPP-IV) in vitro and demonstrated excellent hypoglycemic activities in diabetic mice, similar to the activity of sitagliptin, and compounds T1-T4 shown different extents of NO-releasing abilities and potent antioxidant abilities in vivo. By screening in DPP-4, compound T4 was recognized as a potent DPP-4 inhibitor with the IC50 value of 0.060?μM. Docking study revealed compound T4 has a favorable binding mode. Furthermore, compounds T1-T4 exhibited different extents of NO-releasing abilities and excellent anti-platelet aggregation in vitro. The overall results suggested that T4 could help to the amelioration of endothelial dysfunction by reducing blood glucose, lessening oxidative stress and raising NO levels as well as inhibiting platelet aggregation. Based on this research, compound T4 deserves further investigation as potential new multifunctional anti-diabetic agent with antioxidant, anti-platelet aggregation and endothelial protective properties.  相似文献   
985.
Heterologous expression of the type III polyketide synthase (PKS) gene vioA in marine-derived Streptomyces youssoufiensis OUC6819 led to production of six violapyrones (VLPs), including four novel compounds VLPs Q–T (14) and two known compounds VLPs B and I (5 and 6). The structures of 14 were elucidated by a combination of spectroscopic analyses, including HR-ESIMS and 1D and 2D NMR data, demonstrating that 14 are novel VLPs which are methylated at 4-OH with their corresponding non-methylated counterparts to be VLP A, 5 and 6 and VLP C, respectively. Anti-influenza A [H1N1 (A/Virginia/ATCC1/2009) and H3N2 (A/Aichi/2/1968)] virus activity of compounds 16 as well as VLPs A and C were then evaluated using ribavirin as a positive control (IC50?=?66.7 and 99.6?μM). The results revealed that these VLPs showed considerable anti-H1N1 and anti-H3N2 activities with IC50 values of 30.6–132.4?μM and 45.3–150.0?μM, respectively. Notably, all the methylated VLPs displayed better anti-virus activity than their non-methylated counterparts, among which compound 3 (VLP S) exhibited the best activities. Interestingly, methylation at 4-OH has negative effect on the anti-MRSA (methicillin-resistant Staphylococcus aureus) activity instead, with methylated VLPs displaying decreased (2) or abolished (3 and 4) activities in comparison with each of their non-methylated counterparts.  相似文献   
986.
Owning to the promising neuroprotective profile and the ability to cross the blood–brain barrier, triptolide has attracted extensive attention. Although its limited solubility and toxicity have greatly hindered clinical translation, triptolide has nonetheless emerged as a promising candidate for structure–activity relationship studies for Alzheimer’s disease. In the present study, a series of triptolide analogs were designed and synthesized, and their neuroprotective and anti-neuroinflammatory effects were then tested using a cell culture model. Among the triptolide derivatives tested, a memantine conjugate, compound 8, showed a remarkable neuroprotective effect against Aβ1–42 toxicity in primary cortical neuron cultures as well as an inhibitory effect against LPS-induced TNF-α production in BV2 cells at a subnanomolar concentration. Our findings provide insight into the different pharmacophores that are responsible for the multifunctional effects of triptolide in the central nervous system. Our study should help in the development of triptolide-based multifunctional anti-Alzheimer drugs.  相似文献   
987.
988.
Acclimation to excess light is required for optimizing plant performance under natural environment. The present work showed that the treatment of Arabidopsis leaves with exogenous H2O2 can increase the acclimation of PSII to excess light. Treatments with H2O2 also enhanced the capacity of the mitochondrial alternative respiratory pathway and salicylic acid (SA) content. Our work also showed that the lack in alternative oxidase (AOX1a) in AtAOX1a antisense line and the SA deficiency in NahG (salicylate hydroxylase gene) transgenic mutant attenuated the H2O2-induced acclimation of PSII to excess light. It indicates that the H2O2-induced acclimation of PSII to excess light could be mediated by the alternative respiratory pathway and SA.  相似文献   
989.
Based on the importance of producing in vitro adventitious roots, this study was carried out to investigate the effects of indole-3-butyric acid (IBA) and naphthalene acetic acid (NAA) at a concentration of 2 mg L?1 on the formation of adventitious roots of azalea and their impact on biochemical changes and endogenous hormones. The rooting percentage, root number, and root length were increased in the microshoots of both studied cultivars (‘Mingchao’ and ‘Zihudie’) when the growth medium was supplemented with IBA. Additionally, peroxidase, indole acetic acid oxidase, hydrogen peroxide, and soluble protein contents were improved in both cultivars by auxin treatments especially during the first 7 days of the rooting period. However, application of IBA and NAA increased catalase and polyphenol oxidase in both cultivars during the first 14 and 28 days of culture. The increase in endogenous indole acetic acid (IAA) levels was accompanied by low activity of IAAO during most periods of root induction of microshoots in all treatments. Endogenous gibberellic acid levels were increased after 7 days of culture and then increased again after 28 days of culture. In contrast, the levels of endogenous zeatin riboside and isopentenyl adenosine were decreased with auxin treatments in the first period of the rooting process and then increased after 21 and 28 days of culture. The present study demonstrated that IBA at a concentration of 2 mg L?1 has a strong effect on azalea rooting. Moreover, the efficiency of IBA and NAA effects on biochemical changes during adventitious root induction was investigated, which may provide new horizons of in vitro rooting production and provide valuable information for the micropropagation of Rhododendron plants.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号