首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   35篇
  2021年   4篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   14篇
  2014年   15篇
  2013年   17篇
  2012年   14篇
  2011年   10篇
  2010年   8篇
  2009年   13篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   9篇
  2003年   11篇
  2002年   15篇
  2001年   9篇
  2000年   17篇
  1999年   19篇
  1998年   9篇
  1997年   6篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   12篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   11篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1970年   2篇
  1966年   4篇
  1951年   1篇
  1943年   1篇
  1942年   1篇
排序方式: 共有365条查询结果,搜索用时 16 毫秒
321.
322.
The peptide inhibitor L-leucinethiol (LeuSH) was found to be a potent, slow-binding inhibitor of the aminopeptidase from Aeromonas proteolytica (AAP). The overall potency (K(I)*) of LeuSH was 7 nM while the corresponding alcohol L-leucinol (LeuOH) was a simple competitive inhibitor of much lower potency (K(I) = 17 microM). These data suggest that the free thiol is likely involved in the formation of the E x I and E x I* complexes, presumably providing a metal ligand. In order to probe the nature of the interaction of LeuSH and LeuOH with the dinuclear active site of AAP, we have recorded both the electronic absorption and EPR spectra of [CoCo(AAP)], [CoZn(AAP)], and [ZnCo(AAP)] in the presence of both inhibitors. In the presence of LeuSH, all three Co(II)-substituted AAP enzymes exhibited an absorption band centered at 295 nm, characteristic of a S --> Co(II) ligand-metal charge-transfer band. In addition, absorption spectra recorded in the 450 to 700 nm region all showed changes characteristic of LeuSH and LeuOH interacting with both metal ions. EPR spectra recorded at high temperature (19 K) and low power (2.5 mW) indicated that, in a given enzyme molecule, LeuSH interacts weakly with one of the metal ions in the dinuclear site and that the crystallographically identified mu-OH(H) bridge, which has been shown to mediate electronic interaction of the Co(II) ions, is likely broken upon binding LeuSH. EPR spectra of [CoCo(AAP)]-LeuSH, [ZnCo(AAP)]-LeuSH, and [Co_(AAP)]-LeuSH were also recorded at lower temperature (3.5-4.0 K) and high microwave power (50-553 mW). These signals were unusual and appeared to contain, in addition to the incompletely saturated contributions from the signals characterized at 19 K, a very sharp feature at g(eff) approximately 6.5 that is characteristic of thiolate-Co(II) interactions. Combination of the electronic absorption and EPR data indicates that LeuSH perturbs the electronic structure of both metal ions in the dinuclear active site of AAP. Since the spin-spin interaction seen in resting [CoCo(AAP)] is abolished upon the addition of LeuSH, it is unlikely that a mu-S(R) bridge is established.  相似文献   
323.
We have constructed a novel Pichia pastoris/Escherichia coli dual expression vector for the production of recombinant proteins in both host systems. In this vector, an E. coli T7 promoter region, including the ribosome binding site from the phage T7 major capsid protein for efficient translation is placed downstream from the yeast alcohol oxidase promoter (AOX). For detection and purification of the target protein, the vector contains an amino-terminal oligohistidine domain (His6) followed by the hemaglutinine epitope (HA) adjacent to the cloning sites. A P. pastoris autonomous replicating sequence (PARS) was integrated enabling simple propagation and recovery of plasmids from yeast and bacteria (1). In the present study, the expression of human proteins in P. pastoris and E. coli was compared using this single expression vector. For this purpose we have subcloned a cDNA expression library deriving from human fetal brain (2) into our dual expression T7 vector and investigated 96 randomly picked clones. After sequencing, 29 clones in the correct reading frame have been identified, their plasmids isolated and shuttled from yeast to bacteria. All proteins were expressed soluble in P. pastoris, whereas in E. coli only 31% could be purified under native conditions. Our data indicates that this dual expression vector allows the economic expression and purification of proteins in different hosts without subcloning.  相似文献   
324.
Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α‐Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose‐dependent. Activity‐based protein profiling (ABPP) revealed that the activities of papain‐like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.  相似文献   
325.
We review mathematical and computational models of the structure, dynamics, and force generation properties of dendritic actin networks. These models have been motivated by the dendritic nucleation model, which provided a mechanistic picture of how the actin cytoskeleton system powers cell motility. We describe how they aimed to explain the self-organization of the branched network into a bimodal distribution of filament orientations peaked at 35° and ??35° with respect to the direction of membrane protrusion, as well as other patterns. Concave and convex force–velocity relationships were derived, depending on network organization, filament, and membrane elasticity and accounting for actin polymerization at the barbed end as a Brownian ratchet. This review also describes models that considered the kinetics and transport of actin and diffuse regulators and mechanical coupling to a substrate, together with explicit modeling of dendritic networks.  相似文献   
326.
327.
The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo.  相似文献   
328.
Over the past 13 years, glyoxal has become the leading alternative to formaldehyde as a histological fixative because of its low inhalation risk, faster reaction rate and selective control over crosslinking. The latter attribute is especially important, because most of the difficulties relating to use of formaldehyde-fixed specimens for immunohistochemistry stem from its aggressive crosslinking behavior. With suitable catalysts or other reaction accelerators, glyoxal forms 2-carbon adducts with nearly all end groups in proteins and carbohydrates, leaving most of them unimpaired for subsequent immunohistochemical demonstration. Only arginine is seriously impaired by the formation of imidazoles, which is the basis for the well known arginine blockade method using glyoxal. A special glyoxal-specific antigen retrieval method using high pH and high temperature effectively reverses the blockade and restores immunoreactivity. Other methods for antigen retrieval are rarely beneficial and in most cases damage the specimen. Special stains work well, except silver methods for Helicobacter pylori. Routine hematoxylin and eosin preparations exhibit clarity and cellular detail rarely seen with formaldehyde.  相似文献   
329.
The major bile acids present in the gallbladder bile of the common Australian wombat (Vombatus ursinus) were isolated by preparative HPLC and identified by NMR as the taurine N-acylamidates of chenodeoxycholic acid (CDCA) and 15alpha-hydroxylithocholic acid (3alpha,15alpha-dihydroxy-5beta-cholan-24-oic acid). Taurine-conjugated CDCA constituted 78% of biliary bile acids, and (taurine-conjugated) 15alpha-hydroxylithocholic acid constituted 11%. Proof of structure of the latter compound was obtained by its synthesis from CDCA via a Delta14 intermediate. The synthesis of its C-15 epimer, 15beta-hydroxylithocholic acid (3alpha,15beta-dihydroxy-5beta-cholan-24-oic acid), is also reported. The taurine conjugate of 15alpha-hydroxylithocholic acid was synthesized and shown to have chromatographic and spectroscopic properties identical to those of the compound isolated from bile. It is likely that 15alpha-hydroxylithocholic acid is synthesized in the wombat hepatocyte by 15alpha-hydroxylation of lithocholic acid that was formed by bacterial 7alpha-dehydroxylation of CDCA in the distal intestine. Thus, the wombat appears to use 15alpha-hydroxylation as a novel detoxification mechanism for lithocholic acid.  相似文献   
330.
During the 12 years from 2002 to 2013, the Trustees and laboratory personnel of the Biological Stain Commission (BSC) can claim many accomplishments. These accomplishments are itemized under 11 categories: continuous publication of the official journal, Biotechnic & Histochemistry; production of four special issues of Biotechnic & Histochemistry devoted to specific dyes or stains; standardization of staining and dye purity; mechanisms of staining and prediction of dye behavior; publication of books or book chapters; effects of fixation and processing on staining; cancer research; immunohistochemistry; BSC Laboratory activities; miscellaneous publications; and administrative accomplishments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号