首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2717篇
  免费   267篇
  国内免费   1篇
  2023年   16篇
  2022年   11篇
  2021年   42篇
  2020年   41篇
  2019年   49篇
  2018年   48篇
  2017年   48篇
  2016年   67篇
  2015年   137篇
  2014年   138篇
  2013年   161篇
  2012年   246篇
  2011年   230篇
  2010年   139篇
  2009年   130篇
  2008年   194篇
  2007年   171篇
  2006年   160篇
  2005年   165篇
  2004年   159篇
  2003年   146篇
  2002年   144篇
  2001年   26篇
  2000年   15篇
  1999年   23篇
  1998年   33篇
  1997年   19篇
  1996年   18篇
  1995年   28篇
  1994年   13篇
  1993年   20篇
  1992年   16篇
  1991年   15篇
  1990年   18篇
  1989年   8篇
  1988年   9篇
  1987年   6篇
  1986年   8篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1979年   4篇
  1978年   4篇
  1974年   4篇
  1969年   5篇
  1967年   2篇
  1963年   2篇
  1962年   3篇
  1955年   2篇
排序方式: 共有2985条查询结果,搜索用时 906 毫秒
91.
Plants are a hyperdiverse clade that plays a key role in maintaining ecological and evolutionary processes as well as human livelihoods. Biases, gaps and uncertainties in plant occurrence information remain a central problem in ecology and conservation, but these limitations remain largely unassessed globally. In this synthesis, we propose a conceptual framework for analysing gaps in information coverage, information uncertainties and biases in these metrics along taxonomic, geographical and temporal dimensions, and apply it to all c. 370 000 species of land plants. To this end, we integrated 120 million point‐occurrence records with independent databases on plant taxonomy, distributions and conservation status. We find that different data limitations are prevalent in each dimension. Different metrics of information coverage and uncertainty are largely uncorrelated, and reducing taxonomic, spatial or temporal uncertainty by filtering out records would usually come at great costs to coverage. In light of these multidimensional data limitations, we discuss prospects for global plant ecological and biogeographical research, monitoring and conservation and outline critical next steps towards more effective information usage and mobilisation. Our study provides an empirical baseline for evaluating and improving global floristic knowledge, along with a conceptual framework that can be applied to study other hyperdiverse clades.  相似文献   
92.
Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR‐linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR‐linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases.  相似文献   
93.
94.
Due to their high triacylglyceride content, microalgae are intensively investigated for bio‐economy and food applications. However, lipid analysis is a laborious task incorporating extraction, transesterification and typically gas chromatographic measurement. Co‐elution induces a significant risk of fatty acid misidentification and thus, additional purification steps like thin layer chromatography are needed. Contrary to database matching approaches, solely targeted analysis is facilitated as compound identification is driven by matching retention times or indices with standard substances. In this context, a rapid workflow for the analysis of algal fatty acids is presented. In‐situ transesterification was used to simplify sample preparation and conditions were optimized towards fast processing. If results are needed at the very day of sampling, direct processing without a preceding drying step is feasible to obtain a rough estimate about the occurrence of the major compounds. Coupling gas chromatography and time‐of‐flight mass spectrometry enables untargeted analysis. Unknown compounds may be identified by structural reconstruction of their respective fragmentation patterns and by database matching to routinely avoid mismatches by co‐elution of disturbing agents. The developed workflow was successfully applied to derive the exact stereochemistry of all fatty acids from Chlorella vulgaris and a systematic shift depending on physiological state of the cells was confirmed.  相似文献   
95.
96.
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome‐scale studies to characterize both model and non‐model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome‐wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site‐associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms—enabling the exploration of diverse evolutionary and conservation questions.  相似文献   
97.
Global climate change has profound implications on species distributions and ecosystem functioning. In the coastal zone, ecological responses may be driven by various biogeochemical and physical environmental factors. Synergistic interactions can occur when the combined effects of stressors exceed their individual effects. The Red Sea, characterized by strong gradients in temperature, salinity, and nutrients along the latitudinal axis provides a unique opportunity to study ecological responses over a range of these environmental variables. Using multiple linear regression models integrating in situ, satellite and oceanographic data, we investigated the response of coral reef taxa to local stressors and recent climate variability. Taxa and functional groups responded to a combination of climate (temperature, salinity, air‐sea heat fluxes, irradiance, wind speed), fishing pressure and biogeochemical (chlorophyll a and nutrients ‐ phosphate, nitrate, nitrite) factors. The regression model for each species showed interactive effects of climate, fishing pressure and nutrient variables. The nature of the effects (antagonistic or synergistic) was dependent on the species and stressor pair. Variables consistently associated with the highest number of synergistic interactions included heat flux terms, temperature, and wind speed followed by fishing pressure. Hard corals and coralline algae abundance were sensitive to changing environmental conditions where synergistic interactions decreased their percentage cover. These synergistic interactions suggest that the negative effects of fishing pressure and eutrophication may exacerbate the impact of climate change on corals. A high number of interactions were also recorded for algae, however for this group, synergistic interactions increased algal abundance. This study is unique in applying regression analysis to multiple environmental variables simultaneously to understand stressor interactions in the field. The observed responses have important implications for understanding climate change impacts on marine ecosystems and whether managing local stressors, such as nutrient enrichment and fishing activities, may help mitigate global drivers of change.  相似文献   
98.
Inspired by marine compounds the derivatization of the natural pyrrolo[2,3-d]pyrimidine lead scaffold led to a series of novel compounds targeting the histamine H3 receptor. The focus was set on improved binding towards the receptor and to establish an initial structure-activity relationship for this compound class based on the lead structure (compound V, Ki value of 126 nM). As highest binding affinities were found with 1,4-bipiperidines as basic part of the ligands, further optimization was focused on 4-([1,4′-bipiperidin]-1′-yl)-pyrrolo[2,3-d]pyrimidines. Related pyrrolo[2,3-d]pyrimidines that were isolated from marine sponges like 4-amino-5-bromopyrrolo[2,3-d]pyrimidine (compound III), showed variations in halogenation pattern, though in a next step the impact of halogenation at 2-position was evaluated. The chloro variations did not improve the affinity compared to the dehalogenated compounds. However, the simultaneous introduction of lipophilic cores with electron-withdrawing substitution patterns in 7-position and dehalogenation at 2-position (11b, 12b) resulted in compounds with significantly higher binding affinities (Ki values of 7 nM and 6 nM, respectively) than the initial lead structure compound V. The presented structures allow for a reasonable structure-activity relationship of pyrrolo[2,3-d]pyrimidines as histamine H3 receptor ligands and yielded novel lead structures within the natural compound library against this target.  相似文献   
99.
A fundamental part of the quantitative genetic theory deals with the partitioning of the phenotypic variance into additive genetic and environmental components. During interaction with conspecifics, the interaction partner becomes a part of the environment from the perspective of the focal individual. If the interaction effects have a genetic basis, they are called indirect genetic effects (IGEs) and can evolve along with direct genetic effects. Sexual reproduction is a classic context where potential conflict between males and females can arise from trade‐offs between current and future investments. We studied five female fecundity traits, egg length and number, egg pod length and number and latency to first egg pod, and estimated the direct and IGEs using a half‐sib breeding design in the grasshopper Chorthippus biguttulus. We found that the male IGEs were an order of magnitude lower than the direct genetic effects and were not significantly different from zero. However, there was some indication that IGEs were larger shortly after mating, consistent with the idea that IGEs fade with time after interaction. Female direct heritabilities were moderate to low. Simulation shows that the variance component estimates can appear larger with less data, calling for care when interpreting variance components estimated with low power. Our results illustrate that the contribution of male IGEs is overall low on the phenotypic variance of female fecundity traits. Thus, even in the relevant context of sexual conflict, the influence of male IGEs on the evolutionary trajectory of female reproductive traits is likely to be small.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号