首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   26篇
  国内免费   4篇
  2021年   5篇
  2020年   4篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   9篇
  2014年   12篇
  2013年   11篇
  2012年   11篇
  2011年   9篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   19篇
  2006年   9篇
  2005年   9篇
  2004年   11篇
  2003年   7篇
  2002年   5篇
  2001年   13篇
  2000年   6篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   7篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1926年   1篇
  1916年   1篇
  1910年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有241条查询结果,搜索用时 125 毫秒
101.
The human immunodeficiency virus type 1 structural polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other.The human immunodeficiency virus type 1 (HIV-1) structural precursor polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles (VLPs). Gag is composed of four major structural domains, matrix (MA), capsid (CA), nucleocapsid (NC), and p6, as well as two spacer peptides, SP1 and SP2 (3, 30, 94). Following particle assembly and release, cleavage by HIV-1 protease separates these domains. However, these domains must work together in the context of the full-length Gag polyprotein to drive particle assembly.Previous studies have mapped two major functional domains involved in the early steps of assembly: first, Gag associates with cellular membranes via basic residues and N-terminal myristoylation of the MA domain (10, 17, 20, 35, 39, 87, 91, 106); second, the Gag-Gag interaction domains that span the CA C-terminal domain (CA-CTD) and NC domain promote Gag multimerization (3, 11, 14, 16, 18, 23, 27, 29, 30, 33, 36, 46, 64, 88, 94, 102, 103). Structural and genetic studies have identified two residues (W184 and M185) within a dimerization interface in the CA-CTD that are critical to CA-CA interactions (33, 51, 74, 96). Analytical ultracentrifugation of heterodimers formed between wild-type (WT) Gag and Gag mutants with changes at these residues suggests that the dimerization interface consists of two reciprocal interactions, one of which can be disrupted to form a “half-interface” (22).In addition to the CA-CTD, NC contributes to assembly via 15 basic residues (8, 9, 11, 14, 18, 23, 25, 28, 34, 40, 43, 54, 57, 58, 74, 79, 88, 97, 104, 105), although some researchers have suggested that NC instead contributes to the stability of mature virions after assembly (75, 98, 99). It is thought that the contribution of NC to assembly is due to its ability to bind RNA, since the addition of RNA promotes the formation of particles in vitro (14-16, 37, 46), and RNase treatment disrupts Gag-Gag interactions (11) and immature viral cores (67). However, RNA is not necessary per se, since dimerization motifs can substitute for NC (1, 4, 19, 49, 105). This suggests a model in which RNA serves a structural role, such as a scaffold, to promote Gag-Gag interactions through NC. Based on in vitro studies, it has been suggested that this RNA scaffolding interaction facilitates the low-order Gag multimerization mediated by CA-CTD dimerization (4, 37, 49, 62, 63, 85). Despite a wealth of biochemical data, the relative contributions of the CA-CTD and NC to Gag multimerization leading to assembly are yet to be determined in cells.Mutations in Gag interaction domains alter membrane binding in addition to affecting Gag multimerization. In particular, mutations or truncations of CA reduce membrane binding (21, 74, 82), and others previously reported that mutations or truncations of NC affect membrane binding (13, 78, 89, 107). These findings are consistent with a myristoyl switch model of membrane binding in which Gag can switch between high- and low-membrane-affinity states (38, 71, 76, 83, 86, 87, 92, 95, 107). Many have proposed, and some have provided direct evidence (95), that Gag multimerization mediated by CA or NC interactions promotes the exposure of the myristoyl moiety to facilitate membrane associations.Gag membrane binding and multimerization appear to be interrelated steps of virus assembly, since membrane binding also facilitates Gag multimerization. Unlike betaretroviruses that fully assemble prior to membrane targeting and envelopment (type B/D), lentiviruses, such as HIV, assemble only on cellular membranes at normal Gag expression levels (type C), although non-membrane-bound Gag complexes exist (45, 58, 60, 61, 65). Consistent with this finding, mutations that reduce Gag membrane associations cause a defect in Gag multimerization (59, 74). Therefore, in addition to their primary effects on Gag-Gag interactions, mutations in Gag interaction domains cause a defect in membrane binding, which, in turn, causes a secondary multimerization defect. To determine the relative contributions of the CA-CTD and the NC domain to Gag-Gag interactions at the plasma membrane, it is essential to eliminate secondary effects due to a modulation of membrane binding.Except for studies using a His-tag-mediated membrane binding system (5, 46), biochemical studies of C-type Gag multimerization typically lack membranes. Therefore, these studies do not fully represent particle assembly, which occurs on biological membranes in cells. Furthermore, many biochemical and structural approaches are limited to isolated domains or truncated Gag constructs. Thus, some of these studies are perhaps more relevant to the behavior of protease-cleaved Gag in mature virions. With few exceptions (47, 74), cell-based studies of Gag multimerization have typically been limited to measuring how well mutant Gag is incorporated into VLPs when coexpressed or not with WT Gag. Since VLP production is a complex multistep process, effects of mutations on other steps in the process can confound this indirect measure. For example, NC contributes to VLP production by both promoting multimerization and interacting with the host factor ALIX to promote VLP release (26, 80). To directly assay Gag multimerization in cells, several groups (24, 45, 52, 56) developed microscopy assays based on fluorescence resonance energy transfer (FRET). These assays measure the transfer of energy between donor and acceptor fluorescent molecules that are brought within ∼5 nm by the association of the proteins to which they are attached (41, 48, 90). However, these microscopy-based Gag FRET assays have not been used to fully elucidate several fundamental aspects of HIV-1 Gag multimerization at the plasma membrane of cells, such as the relative contributions of the CA-CTD and NC and the effect of membrane binding on Gag-Gag interactions. In this study, we used a FRET stoichiometry method based on calibrated spectral analysis of fluorescence microscopy images (41). This algorithm determines the fractions of both donor and acceptor fluorescent protein-tagged Gag molecules participating in FRET. For cells expressing Gag molecules tagged with donor (cyan fluorescent protein [CFP]) and acceptor (yellow fluorescent protein [YFP]) molecules, this method measures the apparent FRET efficiency, which is proportional to the mole fraction of Gag constructs in complex. By measuring apparent FRET efficiencies, quantitative estimates of the mole fractions of interacting proteins can be obtained.Using this FRET-based assay, we aim to answer two questions: (i) what are the relative contributions of CA-CTD and NC domains to Gag multimerization when secondary effects via membrane binding are held constant, and (ii) what is the effect of modulating membrane binding on the ability of Gag mutants to interact with WT Gag?Our data demonstrate that the CA-CTD dimerization interface is essential for Gag multimerization at the plasma membrane, as fully disrupting the CA-CTD interaction abolishes FRET, whereas a modest level of FRET is still detected in the absence of NC. We also present evidence that the CA-CTD dimerization interface consists of two reciprocal interactions, allowing the formation of a half-interface that can still contribute to Gag multimerization. Notably, when Gag derivatives with an intact CA-CTD were coexpressed with WT Gag, either membrane binding ability or NC was required for the Gag mutants to interact with WT Gag, suggesting functional compensation between these factors.  相似文献   
102.
Recent genetic studies based on the distribution of mtDNA of haplogroup U6 have led to subtly different theories regarding the arrival of modern human populations in North Africa. One proposes that groups of the proto-U6 lineage spread from the Near East to North Africa around 40–45 ka (thousands of years ago), followed by some degree of regional continuity. Another envisages a westward human migration from the Near East, followed by further demographic expansion at ∼22 ka centred on the Maghreb and associated with a microlithic bladelet culture known as the Iberomaurusian. In evaluating these theories, we report on the results of new work on the Middle (MSA) and Later Stone (LSA) Age deposits at Taforalt Cave in Morocco. We present 54 AMS radiocarbon dates on bone and charcoals from a sequence of late MSA and LSA occupation levels of the cave. Using Bayesian modelling we show that an MSA non-Levallois flake industry was present until ∼24.5 ka Cal BP (calibrated years before present), followed by a gap in occupation and the subsequent appearance of an LSA Iberomaurusian industry from at least 21,160 Cal BP. The new dating offers fresh light on theories of continuity versus replacement of populations as presented by the genetic evidence. We examine the implications of these data for interpreting the first appearance of the LSA in the Maghreb and providing comparisons with other dated early blade and bladelet industries in North Africa.  相似文献   
103.
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.  相似文献   
104.
ABSTRACT

Indirect immunofluorescence performed using sections of actively growing maize root apices fixed and then embedded in low-melting-point Steedman's wax has proved efficient in revealing the arrangements and reorganizations of motility-related cytoskeletal elements which are associated with root cell development and tissue differentiation. This powerful, yet relatively simple, technique shows that specific rearrangements of both microtubular (MT) and actin microfilament (MF) arrays occur in cells as they leave the meristem and traverse the transitional region interpolated between meristem and elongation region. Cytoskeletal and growth analyses have identified the transition zone as critical for both cell and root development; it is in this zone that cell growth is channelled, by the cytoskeleton, into a strictly polarized mode which enables root tips to extend rapidly through the soil in search of water and nutrients. An integrated cytoskeletal network is crucial for both the cytomorphogenesis of individual cells and the overall morphogenesis of the plant body. The latter process can be viewed as a reflection of the tight control which cytoskeletal networks exert not only over cell division planes in the cells within meristematic apices but also over the orientation of cell growth in the meristem and elsewhere. Endoplasmic MTs interconnecting the plasma membrane with the nucleus are suggested to be involved in cell division control; they may also act as a two-way cytoskeletal communication channel for signals passing to and fro between the extracellular environment and the genome. Moreover, the dynamism of endoplasmic MTs exerts direct effects on chromatin structure and the accompanying nuclear architecture and hence can help exert a cellular level of control over cell growth and cell cycle progression. Because the inherent dynamic instability of MTs depends on the concentration of tubulin dimers within the cytoplasm, we propose that when asymmetric cell division occurs, it will result in two daughter cells which differ in the turnover rates of their MTs. This phenomenon could be responsible for different cell fates of daughter plant cells produced by such cell divisions.  相似文献   
105.
The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominately at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.  相似文献   
106.
107.
Prevalence, mean abundance and mean intensity of the most common endohelminths infecting Pacific sanddab Citharichthys sordidus were compared among six trawl stations in the Santa Monica Bay. These trawl stations varied in their distance from the 8 km effluent of the Hyperion treatment plant which is situated adjacent to Santa Monica Bay. Juvenile stages of Anisakis sp., Corynosoma sp., Lacistorhynchus dollfusi and Tetraphyllidean plerocercoids were found infecting Pacific sanddabs. Significantly higher prevalence and mean intensity of L . dollfusi and Anisakis sp. were seen at the non-outfall stations compared to outfall stations either immediately surrounding or in the vicinity of the outfall. These differences appeared to be related to changes in invertebrate population densities in response to the presence of contaminants. Canonical analysis of discriminance using parasite abundance data discriminated non-outfall from outfall stations. The cestode L . dollfusi explained most of the variability in discriminant scores generated from the analysis and appears to warrant further investigation as a potential bioindicator of pollution exposure in its fish host.  相似文献   
108.
Small, dense LDL particles have been associated with an increased risk of coronary artery disease, and cholesteryl ester transfer protein (CETP) has been suggested to play a role in LDL particle remodeling. We examined the relationship between LDL heterogeneity and plasma CETP mass in familial hypercholesterolemia (FH). LDL particles were characterized by polyacrylamide gradient gel electrophoresis in a total of 259 FH heterozygotes and 208 nonFH controls. CETP mass was measured by enzyme-linked immunosorbent assay in a subgroup of 240 participants, which included 120 FH patients matched with 120 controls. As compared with controls, FH subjects had an 11% higher CETP mass. Moreover, LDL-peak particle diameter (LDL-PPD) was significantly smaller in FH heterozygotes than in controls (258.1 +/- 4.8 vs. 259.2 +/- 4.1 A; P = 0.01) after adjustment for covariates. There was also an inverse relationship between LDL-PPD and CETP mass (R = -0.15; P = 0.02), and this relationship was abolished by adjustment for the FH/control status, indicating that LDL-PPD changes in FH are mediated, at least in part, by an increase in plasma CETP mass concentrations. These results suggest that increased plasma CETP mass concentrations could lead to significant LDL particle remodeling in FH heterozygotes and could contribute to the pathogenesis of atherosclerosis.  相似文献   
109.

Background

In 2009, an outbreak of dengue caused high fatality in Sri Lanka. We conducted 5 autopsies of clinically suspected myocarditis cases at the General Hospital, Peradeniya to describe the histopathology of the heart and other organs.

Methods

The diagnosis of dengue was confirmed with specific IgM and IgG ELISA, HAI and RT-PCR techniques. The histology was done in tissue sections stained with hematoxylin and eosin.

Results

Of the 319 cases of dengue fever, 166(52%) had severe infection. Of them, 149 patients (90%) had secondary dengue infection and in 5 patients, DEN-1 was identified as the causative serotype. The clinical diagnosis of myocarditis was considered in 45(27%) patients. The autopsies were done in 5 patients who succumbed to shock (3 females and 2 males) aged 13- 31 years. All had pleural effusions, ascites, bleeding patches in tissue planes and histological evidence of myocarditis. The main histological findings of the heart were interstitial oedema with inflammatory cell infiltration and necrosis of myocardial fibers. One patient had pericarditis. The concurrent pulmonary abnormalities were septal congestion, pulmonary haemorrhage and diffuse alveolar damage; one case showed massive necrosis of liver.

Conclusions

The histology supports occurrence of myocarditis in dengue infection.
  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号