首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42566篇
  免费   16559篇
  国内免费   23篇
  2023年   76篇
  2022年   130篇
  2021年   698篇
  2020年   2333篇
  2019年   3913篇
  2018年   4137篇
  2017年   4351篇
  2016年   4534篇
  2015年   4780篇
  2014年   4577篇
  2013年   5146篇
  2012年   3228篇
  2011年   2819篇
  2010年   3839篇
  2009年   2536篇
  2008年   1788篇
  2007年   1309篇
  2006年   1182篇
  2005年   1107篇
  2004年   1077篇
  2003年   969篇
  2002年   829篇
  2001年   615篇
  2000年   523篇
  1999年   377篇
  1998年   148篇
  1997年   130篇
  1996年   92篇
  1995年   117篇
  1994年   85篇
  1993年   75篇
  1992年   139篇
  1991年   122篇
  1990年   120篇
  1989年   113篇
  1988年   117篇
  1987年   97篇
  1986年   85篇
  1985年   94篇
  1984年   71篇
  1983年   56篇
  1982年   50篇
  1981年   36篇
  1980年   42篇
  1979年   56篇
  1978年   53篇
  1976年   51篇
  1975年   39篇
  1974年   36篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Wood growth constitutes the main process for long‐term atmospheric carbon sequestration in vegetation. However, our understanding of the process of wood growth and its response to environmental drivers is limited. Current dynamic global vegetation models (DGVMs) are mainly photosynthesis‐driven and thus do not explicitly include a direct environmental effect on tree growth. However, physiological evidence suggests that, to realistically model vegetation carbon allocation under increased climatic stressors, it is crucial to treat growth responses independently from photosynthesis. A plausible growth response function suitable for global simulations in DGVMs has been lacking. Here, we present the first soil water‐growth response function and parameter range for deciduous and evergreen conifers. The response curve was calibrated against European larch and Norway spruce in a dry temperate forest in the Swiss Alps. We present a new data‐driven approach based on a combination of tree ring width (TRW) records, growing season length and simulated subdaily soil hydrology to parameterize ring width increment simulations. We found that a simple linear response function, with an intercept at zero moisture stress, used in growth simulations reproduced 62.3% and 59.4% of observed TRW variability for larch and spruce respectively and, importantly, the response function slope was much steeper than literature values for soil moisture effects on photosynthesis and stomatal conductance. Specifically, we found stem growth stops at soil moisture potentials of ?0.47 MPa for larch and ?0.66 MPa for spruce, whereas photosynthesis in trees continues down to ?1.2 MPa or lower, depending on species and measurement method. These results are strong evidence that the response functions of source and sink processes are indeed very different in trees, and need to be considered separately to correctly assess vegetation responses to environmental change. The results provide a parameterization for the explicit representation of growth responses to soil water in vegetation models.  相似文献   
993.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   
994.
Clavija domingensis Urb. & Ekman was one of the many Haitian endemics that were described based on collections made by the great Swedish botanist Leonard Ekman between 1924 and 1928. The species is Critically Endangered sensu IUCN (criteria c2a(i); D) and it is currently the focus of conservation initiatives in Jardin Botanique des Cayes (Haiti), Jardín Botánico Nacional Dr. Rafael M. Moscoso (Dominican Republic), and Fairchild Tropical Botanic Garden (U.S.A.). Now known from only six localities from southern Haiti, each locality only represents a single individual. The species is illustrated based on plants grown in Fairchild Tropical Botanic Garden.  相似文献   
995.
996.
Three case studies involving two temperate Australian seagrass species – Pondweed (Ruppia tuberosa) and Ribbon Weed (Posidonia australis) – highlight different approaches to their restoration. Seeds and rhizomes were used in three collaborative programmes to promote new approaches to scale up restoration outcomes.  相似文献   
997.
Extreme weather events have become a dominant feature of the narrative surrounding changes in global climate with large impacts on ecosystem stability, functioning and resilience; however, understanding of their risk of co‐occurrence at the regional scale is lacking. Based on the UK Met Office’s long‐term temperature and rainfall records, we present the first evidence demonstrating significant increases in the magnitude, direction of change and spatial co‐localisation of extreme weather events since 1961. Combining this new understanding with land‐use data sets allowed us to assess the likely consequences on future agricultural production and conservation priority areas. All land‐uses are impacted by the increasing risk of at least one extreme event and conservation areas were identified as the hotspots of risk for the co‐occurrence of multiple event types. Our findings provide a basis to regionally guide land‐use optimisation, land management practices and regulatory actions preserving ecosystem services against multiple climate threats.  相似文献   
998.
Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production.  相似文献   
999.
Cilia are microtubule‐based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号