首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3562篇
  免费   163篇
  国内免费   2篇
  2022年   7篇
  2021年   29篇
  2020年   18篇
  2019年   29篇
  2018年   47篇
  2017年   30篇
  2016年   48篇
  2015年   101篇
  2014年   126篇
  2013年   245篇
  2012年   245篇
  2011年   225篇
  2010年   145篇
  2009年   124篇
  2008年   238篇
  2007年   241篇
  2006年   230篇
  2005年   252篇
  2004年   220篇
  2003年   245篇
  2002年   270篇
  2001年   37篇
  2000年   37篇
  1999年   39篇
  1998年   71篇
  1997年   44篇
  1996年   39篇
  1995年   40篇
  1994年   26篇
  1993年   29篇
  1992年   29篇
  1991年   28篇
  1990年   21篇
  1989年   13篇
  1988年   11篇
  1987年   13篇
  1986年   8篇
  1985年   14篇
  1984年   11篇
  1983年   9篇
  1982年   16篇
  1981年   17篇
  1980年   10篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
  1971年   3篇
排序方式: 共有3727条查询结果,搜索用时 343 毫秒
81.
82.
For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides (241Am, 134Cs, 137Cs, and 60Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides (241Am, 57Co, 137Cs, 95Zr, 95Nb, 58Co, and 60Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.  相似文献   
83.

Background

Cardiac troponin is a specific biomarker for cardiomyocyte necrosis in acute coronary syndromes. Troponin release from the coronary circulation remains to be determined because of the lower sensitivity of the conventional assay. We sought to determine basal and angina-induced troponin release using a highly sensitive troponin assay.

Methods and Results

The cardiac troponin T levels in serum sampled from the peripheral vein (PV), the aortic root (AO), and the coronary sinus (CS) were measured in 105 consecutive stable patients with coronary risk factor(s) and suspected coronary artery disease (CAD) and in 33 patients without CAD who underwent an acetylcholine provocation test. At baseline, there was a significant increase in the troponin levels from AO [9.0 (6.4, 13.1) pg/mL for median (25th, 75th percentiles)] to CS [10.3 (7.3, 15.5) pg/mL, p<0.001] in 96 (91.4%) patients and the difference was 1.1 (0.4, 2.1) pg/mL, which reflected basal transcardiac troponin release (TTR). TTR was positively correlated with PV levels (r = 0.22, p = 0.03). Male sex, left ventricular hypertrophy determined by echocardiography, T-wave inversion, and CAD correlated with elevated TTR defined as above: median, 1.1 pg/mL. A significant increase in TTR was noted in 17 patients with coronary spasms [0.6 (0.2, 1.2) pg/mL, p<0.01] but not in 16 patients without spasms [0.0 (−0.5, 0.9) pg/mL, p = 0.73] after the acetylcholine provocation.

Conclusion

Basal TTR in the coronary circulation was observed in most of the patients with suspected CAD and risk factor(s). This sensitive assay detected myocardial ischemia-induced increases in TTR caused by coronary spasms.  相似文献   
84.

Background

Klotho was originally identified in a mutant mouse strain unable to express the gene that consequently showed shortened life spans. In humans, low serum Klotho levels are related to the prevalence of cardiovascular diseases in community-dwelling adults. However, it is unclear whether the serum Klotho levels are associated with signs of vascular dysfunction such as arterial stiffness, a major determinant of prognosis, in human subjects with chronic kidney disease (CKD).

Methods

We determined the levels of serum soluble Klotho in 114 patients with CKD using ELISA and investigated the relationship between the level of Klotho and markers of CKD-mineral and bone disorder (CKD-MBD) and various types of vascular dysfunction, including flow-mediated dilatation, a marker of endothelial dysfunction, ankle-brachial pulse wave velocity (baPWV), a marker of arterial stiffness, intima-media thickness (IMT), a marker of atherosclerosis, and the aortic calcification index (ACI), a marker of vascular calcification.

Results

The serum Klotho level significantly correlated with the 1,25-dihydroxyvitamin D level and inversely correlated with the parathyroid hormone level and the fractional excretion of phosphate. There were significant decreases in serum Klotho in patients with arterial stiffness defined as baPWV≥1400 cm/sec, atherosclerosis defined as maximum IMT≥1.1 mm and vascular calcification scores of ACI>0%. The serum Klotho level was a significant determinant of arterial stiffness, but not endothelial dysfunction, atherosclerosis or vascular calcification, in the multivariate analysis in either metabolic model, the CKD model or the CKD-MBD model. The adjusted odds ratio of serum Klotho for the baPWV was 0.60 (p = 0.0075).

Conclusions

Decreases in the serum soluble Klotho levels are independently associated with signs of vascular dysfunction such as arterial stiffness in patients with CKD. Further research exploring whether therapeutic approaches to maintain or elevate the Klotho level could improve arterial stiffness in CKD patients is warranted.  相似文献   
85.
We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening.  相似文献   
86.
87.
88.
Recent studies have shown the gene expression of several transporters to be circadian rhythmic. However, it remains to be elucidated whether the expression of P‐glycoprotein, which is involved in the transport of many medications, undergoes 24 h rhythmicity. To address this issue, we investigated daily profiles of P‐glycoprotein mRNA and protein levels in peripheral mouse tissues. In the liver and intestine, but not in the kidney, Abcb1a mRNA expression showed clear 24 h rhythmicity. On the other hand, Abcb1b and Abcb4, the other P‐glycoprotein genes, did not exhibit significant rhythmic expression in the studied tissues. In the intestine, levels of whole P‐glycoprotein also exhibited a daily rhythm, with a peak occurring in the latter half of the light phase and a trough at the onset of the light phase. Consistent with the day‐night change of P‐glycoprotein level, the ex vivo accumulation of digoxin, an Abcb1a P‐glycoprotein substrate, into the intestinal segments at the onset of dark phase was significantly lower than it was at the onset of the light phase. Thus, Abcb1a P‐glycoprotein expression, and apparently its function, are 24 h rhythmic at least in mouse intestine tissue. This circadian variation might be involved in various chronopharmacological phenomena.  相似文献   
89.
Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca2+]c). However, the [Ca2+]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca2+ response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10−4g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca2+]c increase, which corresponds closely to the second sustained [Ca2+]c increase observed in ground experiments. The [Ca2+]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g–2g) into Ca2+ signals on a subsecond time scale.Calcium ion (Ca2+) functions as an intracellular second messenger in many signaling pathways in plants (White and Broadley, 2003; Hetherington and Brownlee, 2004; McAinsh and Pittman, 2009; Spalding and Harper, 2011). Endogenous and exogenous signals are spatiotemporally encoded by changing the free cytoplasmic concentration of Ca2+ ([Ca2+]c), which in turn triggers [Ca2+]c-dependent downstream signaling (Sanders et al., 2002; Dodd et al., 2010). A variety of [Ca2+]c increases induced by diverse environmental and developmental stimuli are reported, such as phytohormones (Allen et al., 2000), temperature (Plieth et al., 1999; Dodd et al., 2006), and touch (Knight et al., 1991; Monshausen et al., 2009). The [Ca2+]c increase couples each stimulus and appropriate physiological responses. In the Ca2+ signaling pathways, the stimulus-specific [Ca2+]c pattern (e.g. amplitude and oscillation) provide the critical information for cellular signaling (Scrase-Field and Knight, 2003; Dodd et al., 2010). Therefore, identification of the stimulus-specific [Ca2+]c signature is crucial for an understanding of the intracellular signaling pathways and physiological responses triggered by each stimulus, as shown in the case of cold acclimation (Knight et al., 1996; Knight and Knight, 2000).Plants often exhibit biphasic [Ca2+]c increases in response to environmental stimuli. Thus, slow cooling causes a fast [Ca2+]c transient followed by a second, extended [Ca2+]c increase in Arabidopsis (Arabidopsis thaliana; Plieth et al., 1999; Knight and Knight, 2000). The Ca2+ channel blocker lanthanum (La3+) attenuated the fast transient but not the following increase (Knight and Knight, 2000), suggesting that these two [Ca2+]c peaks have different origins. Similarly, hypoosmotic shock caused a biphasic [Ca2+]c increase in tobacco (Nicotiana tabacum) suspension-culture cells (Takahashi et al., 1997; Cessna et al., 1998). The first [Ca2+]c peak was inhibited by gadolinium (Gd3+), La3+, and the Ca2+ chelator EGTA (Takahashi et al., 1997; Cessna et al., 1998), whereas the second [Ca2+]c increase was inhibited by the intracellular Ca2+ store-depleting agent caffeine but not by EGTA (Cessna et al., 1998). The amplitude of the first [Ca2+]c peak affected the amplitude of the second increase and vice versa (Cessna et al., 1998). These results suggest that even though the two [Ca2+]c peaks originate from different Ca2+ fluxes (e.g. Ca2+ influx through the plasma membrane and Ca2+ release from subcellular stores, respectively), they are closely interrelated, showing the importance of the kinetic and pharmacological analyses of these [Ca2+]c increases.Changes in the gravity vector (gravistimulation) could work as crucial environmental stimuli in plants and are generally achieved by rotating the specimens (e.g. +180°) in ground experiments. Use of Arabidopsis seedlings expressing apoaequorin, a Ca2+-reporting photoprotein (Plieth and Trewavas, 2002; Toyota et al., 2008a), has revealed that gravistimulation induces a biphasic [Ca2+]c increase that may be involved in the sensory pathway for gravity perception/response (Pickard, 2007; Toyota and Gilroy, 2013) and the intracellular distribution of auxin transporters (Benjamins et al., 2003; Zhang et al., 2011). These two Ca2+ changes have different characteristics. The first transient [Ca2+]c increase depends on the rotational velocity but not angle, whereas the second sustained [Ca2+]c increase depends on the rotational angle but not velocity. The first [Ca2+]c transient was inhibited by Gd3+, La3+, and the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid but not by ruthenium red (RR), whereas the second sustained [Ca2+]c increase was inhibited by all these chemicals. These results suggest that the first transient and second sustained [Ca2+]c increases are related to the rotational stimulation and the gravistimulation, respectively, and are mediated by distinct molecular mechanisms (Toyota et al., 2008a). However, it has not been demonstrated directly that the second sustained [Ca2+]c increase is induced solely by gravistimulation; it could be influenced by other factors, such as an interaction with the first transient [Ca2+]c increase (Cessna et al., 1998), vibration, and/or deformation of plants during the rotation.To elucidate the genuine Ca2+ signature in response to gravistimulation in plants, we separated rotation and gravistimulation under microgravity (μg; less than 10−4g) conditions provided by parabolic flight (PF). Using this approach, we were able to apply rotation and gravistimulation to plants separately (Fig. 1). When Arabidopsis seedlings were rotated +180° under μg conditions, the [Ca2+]c response to the rotation was transient and almost totally attenuated in a few seconds. Gravistimulation (transition from μg to 1.5g) was then applied to these prerotated specimens at the terminating phase of the PF. This gravistimulation without simultaneous rotation induced a sustained [Ca2+]c increase. The kinetic properties of this sustained [Ca2+]c increase were examined under different gravity intensities (0.5g–2g) and sequences of gravity intensity changes (Fig. 2A). This analysis revealed that gravistimulation-specific Ca2+ response has an almost linear dependency on gravitational acceleration (0.5g–2g) and an extremely rapid responsiveness of less than 1 s.Open in a separate windowFigure 1.Diagram of the experimental procedures for applying separately rotation and gravistimulation to Arabidopsis seedlings. Rotatory stimulation (green arrow) was applied by rotating the seedlings 180° under μg conditions, and 1.5g 180° rotation gravistimulation (blue arrow) was applied to the prerotated seedlings after μg.Open in a separate windowFigure 2.Acceleration, temperature, humidity, and pressure in an aircraft during flight experiments. A, Accelerations along x, y, and z axes in the aircraft during PF. The direction of flight (FWD) and coordinates (x, y, and z) are indicated in the bottom graph. The inset shows an enlargement of the acceleration along the z axis (gravitational acceleration) during μg conditions lasting for approximately 20 s. B, Temperature, humidity, and pressure in the aircraft during PF. Shaded areas in graphs denote the μg condition.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号