首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   27篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   12篇
  2015年   13篇
  2014年   13篇
  2013年   79篇
  2012年   29篇
  2011年   26篇
  2010年   27篇
  2009年   20篇
  2008年   44篇
  2007年   42篇
  2006年   28篇
  2005年   45篇
  2004年   29篇
  2003年   27篇
  2002年   25篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   9篇
  1996年   2篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   7篇
  1982年   8篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1968年   2篇
  1959年   1篇
排序方式: 共有597条查询结果,搜索用时 31 毫秒
41.

Background

Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress.

Methods

hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons.

Results

Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved.

Conclusion

hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads.

General significance

Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons.  相似文献   
42.
43.
Recently, combination treatment with a macrolide and a steroid for Mycoplasma pneumoniae (Mp) pneumonia has been reported to be effective. Thus, the effect of this combination on a mouse model of lung inflammation associated with Mp extract (the LIMEX mouse) was studied. Interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) were induced in Mp extract-treated RAW264.7 cells, and this induction was inhibited by dexamethasone, parthenolide, SB203580 or LY294002. This suggested that Mp extract activates nuclear factor κB-, p38- and PI-3K-linked pro-inflammatory signals. The LIMEX mice were then either treated with or without clarithromycin and/or dexamethasone. Clarithromycin administration enhanced the production of IL-6, TNF-α, macrophage inflammatory protein-1α, monocyte chemotactic protein-1 and RANTES, while their production was perfectly suppressed by the combination of clarithromycin and dexamethasone. IL-17, IL-23, keratinocyte-derived chemokine (KC) and interferon-γ levels were not affected by clarithromycin treatment, but they were significantly suppressed by the combination of dexamethasone and clarithromycin. Collectively, some components of Mp extract provoked an inflammatory reaction in the RAW 264.7 cell line and LIMEX mice. Whereas the lung reaction in LIMEX mice was further exacerbated by clarithromycin treatment, it was resolved by the combinational treatment with clarithromycin and dexamethasone.  相似文献   
44.
The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex.  相似文献   
45.
46.
We have investigated the molecular properties of rod and cone visual pigments to elucidate the differences in the molecular mechanism(s) of the photoresponses between rod and cone photoreceptor cells. We have found that the cone pigments exhibit a faster pigment regeneration and faster decay of meta-II and meta-III intermediates than the rod pigment, rhodopsin. Mutagenesis experiments have revealed that the amino acid residues at positions 122 and 189 in the opsins are the determinants for these differences. In order to study the relationship between the molecular properties of visual pigments and the physiology of rod photoreceptors, we used mouse rhodopsin as a model pigment because, by gene-targeting, the spectral properties of the pigment can be directly correlated to the physiology of the cells. In the present paper, we summarize the spectroscopic properties of cone pigments and describe our studies with mouse rhodopsin utilizing a high performance charge coupled device (CCD) spectrophotometer.  相似文献   
47.
Red-green color vision in primates is unique in the sense that it is mediated by two photoreceptor cells that are indistinguishable in all aspects except for their visual pigments. In order to generate an animal model for investigation of the interaction between red-green inputs at the molecular level, we applied knock-in technology and X-chromosome inactivation machinery to make a mouse model with cone cells possessing visual pigments with different spectral sensitivities. We introduced a S308A point mutation into the Green opsin gene allele on the X-chromosome. This manipulation generated a 24 nm red-shift of absorption maximum in the cone pigment with negligible functional differences in other molecular properties. Amplitudes of responses in ERG and ganglion cell recordings of homozygotes were similar to those of wild-types, although the spectral sensitivities differed. Heterozygotes showed variable spectral sensitivities of ganglion cell responses due to the different integration of the native and the S308A cone inputs on the dendritic fields. In situ hybridization experiments showed that cone cells with respective pigments formed patch-like clusters of specific L cone-types, approximately 30 mum in diameter, which were randomly distributed in the dorsal region of the retinas. Since the patch-like clustering was arranged by X-inactivation, such clustering could be present in the peripheral retinas of New World monkeys with polymorphic L pigments, indicating that our mice would be a suitable model to study evolution of the mammalian color vision system.  相似文献   
48.
In recent years, circadian rhythm sleep disorders in humans have been increasing. Clinical features characteristic of this disorder are well known, but the specific causes remain unknown. However, various derangements of circadian expression of the clock gene are a probable cause of this disease. We have attempted to elucidate the relationship between the expression of the clock genes in whole blood cells and the clinical features characteristic of this disorder. In this study, we indicate the daily expression of clock genes period (Per) 1, 2, 3, Bmal1, and Clock in whole blood cells in 12 healthy male subjects. The peak phase of Per1, Per2, and Per3 appeared in the early morning, whereas that of Bmal1 and Clock appeared in the midnight hours. Furthermore, in one patient case with circadian rhythm sleep disorder, we observed variations of the peak phase in clock genes by treatments such as light therapy, exercise therapy, and medicinal therapy. This study suggested that the monitoring of human clock genes in whole blood cells, which may be functionally important for the molecular control of the circadian pacemaker as well as in suprachiasmatic nucleus, might be useful to evaluate internal synchronization.  相似文献   
49.
50.
The analysis of expressed sequences from a diverse set of plant species has fueled the increase in understanding of the complex molecular mechanisms underlying plant growth regulation. While representative data sets can be found for the major branches of plant evolution, fern species data are lacking. To further the availability of genetic information in pteridophytes, a normalized cDNA library of Adiantum capillus-veneris was constructed from prothallia grown under white light. A total of 10,420 expressed sequence tags (ESTs) were obtained and clustering of these sequences resulted in 7,100 nonredundant clusters. Of these, 1,608 EST clusters were found to be similar to sequences of known function and 1,092 EST clusters showed similarity to sequences of unknown function. Given the usefulness of Adiantum for developmental studies, the sequence data represented in this report stand to make a significant contribution to the understanding of plant growth regulation, particularly for pteridophytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号