首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1391篇
  免费   56篇
  2023年   1篇
  2022年   2篇
  2021年   20篇
  2020年   6篇
  2019年   14篇
  2018年   27篇
  2017年   25篇
  2016年   33篇
  2015年   53篇
  2014年   57篇
  2013年   110篇
  2012年   118篇
  2011年   118篇
  2010年   72篇
  2009年   57篇
  2008年   89篇
  2007年   84篇
  2006年   80篇
  2005年   78篇
  2004年   84篇
  2003年   73篇
  2002年   83篇
  2001年   5篇
  2000年   9篇
  1999年   9篇
  1998年   20篇
  1997年   14篇
  1996年   9篇
  1995年   14篇
  1994年   16篇
  1993年   15篇
  1992年   1篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1982年   7篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   3篇
  1975年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有1447条查询结果,搜索用时 15 毫秒
101.
102.
Hamada S  Ito H  Ueno H  Takeda Y  Matsui H 《Phytochemistry》2007,68(10):1367-1375
Starch-branching enzymes (SBEs) play a pivotal role in determining the fine structure of starch by catalyzing the syntheses of alpha-1,6-branch points. They are the members of the alpha-amylase family and have four conserved regions in a central (beta/alpha)8 barrel, including the catalytic sites. Although the role of the catalytic barrel domain of an SBE is known, that of its N- and C-terminal regions remain unclear. We have previously shown that the C-terminal regions of the two SBE isozymes (designated as PvSBE1 and PvSBE2) from kidney bean (Phaseolus vulgaris L.) have different roles in branching enzyme activity. To understand the contribution of the N-terminal region to catalysis, six chimeric enzymes were constructed between PvSBE1 and PvSBE2. Only one enzyme (1Na/2Nb)-II, in which a portion of the N-terminal region of PvSBE2 was substituted by the corresponding region of PvSBE1, retained 6% of the PvSBE2 activity. The N-terminal truncated form (DeltaN46-PvSBE2), lacking 46 N-terminal residues of PvSBE2, lost enzyme activity and stability to proteolysis. To investigate the possible function of this region, three residues (Asp-15, His-24, and Arg-28) among these 46 residues were subjected to site-directed mutagenesis. The purified mutant enzymes showed nearly the same K(m) values as PvSBE2 but had lower V(max) values and heat stabilities than PvSBE2. These results suggest that the N-terminal region of the kidney bean SBE is essential for maximum enzyme activity and thermostability.  相似文献   
103.
104.
GADD34 is a protein that is induced by a variety of stressors, including DNA damage, heat shock, nutrient deprivation, energy depletion, and endoplasmic reticulum stress. Here, we demonstrated that GADD34 induced by vesicular stomatitis virus (VSV) infection suppressed viral replication in wild-type (WT) mouse embryo fibroblasts (MEFs), whereas replication was enhanced in GADD34-deficient (GADD34-KO) MEFs. Enhanced viral replication in GADD34-KO MEFs was reduced by retroviral gene rescue of GADD34. The level of VSV protein expression in GADD34-KO MEFs was significantly higher than that in WT MEFs. Neither phosphorylation of eIF2alpha nor cellular protein synthesis was correlated with viral replication in GADD34-KO MEFs. On the other hand, phosphorylation of S6 and 4EBP1, proteins downstream of mTOR, was suppressed by VSV infection in WT MEFs but not in GADD34-KO MEFs. GADD34 was able to associate with TSC1/2 and dephosphorylate TSC2 at Thr1462. VSV replication was higher in TSC2-null cells than in TSC2-expressing cells, and constitutively active Akt enhanced VSV replication. On the other hand, rapamycin, an mTOR inhibitor, significantly suppressed VSV replication in GADD34-KO MEFs. These findings demonstrate that GADD34 induced by VSV infection suppresses viral replication via mTOR pathway inhibition, indicating that cross talk between stress-inducible GADD34 and the mTOR signaling pathway plays a critical role in antiviral defense.  相似文献   
105.
106.
The overall architecture of IncP-1 plasmids is very conserved in that the accessory genes are typically located in one or two specific regions: between oriV and trfA and between the tra and trb operons. Various hypotheses have been formulated to explain this, but none have been tested experimentally. We investigated whether this structural similarity is due to region-specific transposition alone or also is reliant on selection for plasmids with insertions limited to these two regions. We first examined the transposition of Tn21Km into IncP-1beta plasmid pBP136 and found that most Tn21Km insertions (67%) were located around oriV. A similar experiment using the oriV region of IncP-1beta plasmid pUO1 confirmed these results. We then tested the transferability, stability, and fitness cost of different pBP136 derivatives to determine if impairment of these key plasmid characters explained the conserved plasmid architecture. Most of the pBP136 derivatives with insertions in transfer genes were no longer transferable. The plasmids with insertions in the oriV-trfA and tra-trb regions were more stable than other plasmid variants, and one of these also showed a significantly lower fitness cost. In addition, our detailed sequence analysis of IncP-1 plasmids showed that Tn402/5053-like transposons are situated predominantly between the tra and trb operons and close to the putative resolution site for the ParA resolvase, a potential hot spot for those transposons. Our study presents the first empirical evidence that region-specific insertion of transposons in combination with selection for transferable and stable plasmids explains the structural similarity of IncP-1 plasmids.  相似文献   
107.
The BAHD family is a class of acyl-CoA-dependent acyltransferases that are involved in plant secondary metabolism and show a diverse range of specificities for acyl acceptors. Anthocyanin acyltransferases make up an important class of the BAHD family and catalyze the acylation of anthocyanins that are responsible for most of the red-to-blue colors of flowers. Here, we describe crystallographic and mutational studies of three similar anthocyanin malonyltransferases from red chrysanthemum petals: anthocyanidin 3-O-glucoside-6'-O-malonyltransferase (Dm3MaT1), anthocyanidin 3-O-glucoside-3', 6'-O-dimalonyltransferase (Dm3MaT2), and a homolog (Dm3MaT3). Mutational analyses revealed that seven amino acid residues in the N- and C-terminal regions are important for the differential acyl-acceptor specificity between Dm3MaT1 and Dm3MaT2. Crystallographic studies of Dm3MaT3 provided the first structure of a BAHD member, complexed with acyl-CoA, showing the detailed interactions between the enzyme and acyl-CoA molecules. The structure, combined with the results of mutational analyses, allowed us to identify the acyl-acceptor binding site of anthocyanin malonyltransferases, which is structurally different from the corresponding portion of vinorine synthase, another BAHD member, thus permitting the diversity of the acyl-acceptor specificity of BAHD family to be understood.  相似文献   
108.
The receptor specificity of influenza viruses is one factor that allows avian influenza viruses to cross the species barrier. The recent transmissions of avian H5N1 and H9N2 influenza viruses from chickens and/or quails to humans indicate that avian influenza viruses can directly infect humans without an intermediate host, such as pigs. In this study, we used two strains of influenza A virus (A/PR/8/34, which preferentially binds to an avian-type receptor, and A/Memphis/1/71, which preferentially binds to a human-type receptor) to probe the receptor specificities in host cells. Epithelial cells of both quail and chicken intestines (colons) could bind both avian- and human-type viruses. Infected cultured quail colon cells expressed viral protein and allowed replication of the virus strain A/PR/8/34 or A/Memphis/1/71. To understand the molecular basis of these phenomena, we further investigated the abundance of sialic acid (Sia) linked to galactose (Gal) by the alpha2-3 linkage (Siaalpha2-3Gal) and Siaalpha2-6Gal in host cells. In glycoprotein and glycolipid fractions from quail and chicken colon epithelial cells, there were some bound components of Sia-Gal linkage-specific lectins, Maackia amurensis agglutinin (specific for Siaalpha2-3 Gal) and Sambucus nigra agglutinin (specific for Siaalpha2-6Gal), indicating that both Siaalpha2-3Gal and Siaalpha2-6Gal exist in quail and chicken colon cells. Furthermore, we demonstrated by fluorescence high-performance liquid chromatography (HPLC) analysis that 5-N-acetylneuraminic acid was the main molecular species of Sia, and we demonstrated by multi-dimensional HPLC mapping and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis that bi-antennary complex-type glycans alpha2-6 sialylated at the terminal Gal residue(s) are major (more than 79%) sialyl N-glycans expressed by intestinal epithelial tissues in both the chicken and quail. Taken together, these results indicate that quails and chickens have molecular characterization as potential intermediate hosts for avian influenza virus transmission to humans and could generate new influenza viruses with pandemic potential.  相似文献   
109.
110.
The KCNQ1 gene encodes a voltage-dependent potassium ion channel, and mutations in this gene are the most common cause of congenital long QT syndrome (LQTS). In the present study, we investigated the various phenotypic characteristics of vertigo 2 Jackson (C3H/HeJCrl-Kcnq1(vtg-2J)/J) mice with a Kcnq1 mutation. Both heterozygotes (vtg-2J/+) and homozygotes (vtg-2J/vtg-2J) showed prolonged QT intervals in electrocardiograms (ECGs) compared to C3H/HeJ control (+/+) mice. Furthermore, vtg-2J/vtg-2J mice showed gastric achlorhydria associated with elevation of their serum gastrin levels. The serum corticosterone levels were also significantly increased in vtg-2J/vtg-2J mice. In addition, vtg-2J/vtg-2J mice exhibited significantly higher blood pressure. These findings indicate that the Kcnq1 mutation in vtg-2J mice alters various physiological functions in the cardiac, gastric and adrenocortical systems, and suggest that vtg-2J mice may represent a useful model for studying Kcnq1 functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号