首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   50篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   5篇
  2017年   10篇
  2016年   7篇
  2015年   7篇
  2014年   11篇
  2013年   17篇
  2012年   20篇
  2011年   19篇
  2010年   12篇
  2009年   13篇
  2008年   19篇
  2007年   18篇
  2006年   28篇
  2005年   19篇
  2004年   13篇
  2003年   16篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   5篇
  1995年   5篇
  1994年   3篇
  1992年   9篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   6篇
  1972年   4篇
  1971年   3篇
  1968年   3篇
  1967年   6篇
  1965年   2篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
71.
The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.  相似文献   
72.
73.
Amphipathic polymers called amphipols provide a valuable alternative to detergents for keeping integral membrane proteins soluble in aqueous buffers. Here, we characterize spatial contacts of amphipol A8-35 with membrane proteins from two architectural classes: The 8-stranded β-barrel outer membrane protein OmpX and the α-helical protein bacteriorhodopsin. OmpX is well structured in A8-35, with its barrel adopting a fold closely similar to that in dihexanoylphosphocholine micelles. The accessibility of A8-35-trapped OmpX by a water-soluble paramagnetic molecule is highly similar to that in detergent micelles and resembles the accessibility in the natural membrane. For the α-helical protein bacteriorhodopsin, previously shown to keep its fold and function in amphipols, NMR data show that the imidazole protons of a polyhistidine tag at the N-terminus of the protein are exchange protected in the presence of detergent and lipid bilayer nanodiscs, but not in amphipols, indicating the absence of an interaction in the latter case. Overall, A8-35 exhibits protein interaction properties somewhat different from detergents and lipid bilayer nanodiscs, while maintaining the structure of solubilized integral membrane proteins.  相似文献   
74.
75.
Czarnes  S.  Hiller  S.  Dexter  A. R.  Hallett  P. D.  Bartoli  F. 《Plant and Soil》1999,211(1):69-86
This study was designed to investigate the strength of attachment of plant seedling roots to the soil in which they were grown. The study also assessed the effects of differing soil textures and differing soil matric potentials upon the strength of the root:soil attachment. A device for growing roots upon a soil surface was designed, and was used to produce roots which were attached to the soil. In order to quantify root:soil adhesion, roots of maize seedlings, grown on the soil surface, were subsequently peeled off using a universal test machine, in conjunction with simultaneous time-lapse video observation. To clarify the partitioning of energy in the root:soil peeling test, separate mechanical tests on roots, and on two adherent remoulded topsoil balls were also carried out. The seedling root was characterised by a low bending stiffness. The energy stored in bending was negligible, compared to the root:soil adhesion energy. The mechanical properties of two adherent remoulded topsoil balls were a decrease of the soil:soil adhesion energy as the soil:soil plastic energy increased. These two parameters were therefore interdependent. Using a video-camera system, it was possible to separate the different processes occurring during the root:soil peeling test, in particular, the seed:soil adhesion and the root:soil soil adhesion. An interpretation of the complex and variable force:displacement curves was thus possible, enabling calculation of the root:soil interfacial rupture energy. At a given suction (10 kPa), the results of the peeling test showed a clear soil texture effect on the value of the root:soil interfacial rupture energy. In contrast, for the same silty topsoil, the effect of the soil water suction on the value of the interfacial rupture energy was very moderate. The root:soil interfacial rupture energy was controlled mainly by a product of microscopic soil specific surface area and the macroscopic contact surface area between the root and the soil. Biological and physical interactions contributing to root:soil adhesion such as root:soil interlocking mechanics were also analysed and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
76.
77.
The yeast KAR1 gene is essential for mitotic growth and important for nuclear fusion. Mutations in KAR1 prevent duplication of the spindle pole body (SPB), and affect functions associated with both the nuclear and cytoplasmic microtubules. The localization of hybrid Kar1-lacZ proteins, described elsewhere (Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press), suggest that the protein is associated with the SPB. In this paper, we report a deletion analysis demonstrating that the mitotic and karyogamy functions of KAR1 are separate and independent, residing in discrete functional domains. One region, here shown to be essential for mitosis, coincided with a part of the protein that is both necessary and sufficient to target Karl-lacZ hybrid proteins to the SPB (Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press). Complementation testing demonstrated that deletions in this interval did not affect nuclear fusion. A second region, required only for karyogamy, was necessary for the localization of a Kar3-lacZ hybrid protein to the SPB. These data suggest a model for the roles of Kar1p and Kar3p, a kinesin-like protein, in nuclear fusion. Finally, a third region of KAR1 was found to be important for both mitosis and karyogamy. This domain included the hydrophobic carboxy terminus and is sufficient to target a lacZ-Kar1 hybrid protein to the nuclear envelope (Vallen E. A., T. Y. Scherson, T. Roberts, K. van Zee, and M. D. Rose. 1992. Cell. In press). Altogether, the essential mitotic regions of KAR1 comprised 20% of the coding sequence. We propose a model for Kar1p in which the protein is composed of several protein-binding domains tethered to the nuclear envelope via its hydrophobic tail.  相似文献   
78.
We examine basic asymptotic properties of relative risk for two families of generalized Erlang processes (where each one is based off of a simplified Armitage and Doll multistage model) in order to predict relative risk data from cancer. The main theorems that we are able to prove are all corroborated by large clinical studies involving relative risk for former smokers and transplant recipients. We then show that at least some of these theorems do not extend to other Armitage and Doll multistage models. We conclude with suggestions for lifelong increased cancer screening for both former smoker and transplant recipient subpopulations of individuals and possible future directions of research.  相似文献   
79.
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号