首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   24篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2018年   7篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   11篇
  2013年   12篇
  2012年   15篇
  2011年   10篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   11篇
  2006年   9篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1970年   2篇
  1966年   2篇
排序方式: 共有173条查询结果,搜索用时 46 毫秒
51.
The global decline of biodiversity caused by human domination of ecosystems worldwide is supposed to alter important process rates and state variables in these ecosystems. However, there is considerable debate on the prevalence and importance of biodiversity effects on ecosystem function (BDEF). Here, we argue that much of the debate stems from two major shortcomings. First, most studies do not directly link the traits leading to increased or decreased function to the traits needed for species coexistence and dominance. We argue that implementing a trait-based approach and broadening the perception of diversity to include trait dissimilarity or trait divergence will result in more realistic predictions on the consequences of altered biodiversity. Second, the empirical and theoretical studies do not reflect the complexity of natural ecosystems, which makes it difficult to transfer the results to natural situations of species loss. We review how different aspects of complexity (trophic structure, multifunctionality, spatial or temporal heterogeneity, and spatial population dynamics) alter our perception of BDEF. We propose future research avenues concisely testing whether acknowledging this complexity will strengthen the observed biodiversity effects. Finally, we propose that a major future task is to disentangle biodiversity effects on ecosystem function from direct changes in function due to human alterations of abiotic constraints.  相似文献   
52.
53.
Nutrient co-limitation of primary producer communities   总被引:5,自引:0,他引:5  
Synergistic interactions between multiple limiting resources are common, highlighting the importance of co-limitation as a constraint on primary production. Our concept of resource limitation has shifted over the past two decades from an earlier paradigm of single-resource limitation towards concepts of co-limitation by multiple resources, which are predicted by various theories. Herein, we summarise multiple-resource limitation responses in plant communities using a dataset of 641 studies that applied factorial addition of nitrogen (N) and phosphorus (P) in freshwater, marine and terrestrial systems. We found that more than half of the studies displayed some type of synergistic response to N and P addition. We found support for strict definitions of co-limitation in 28% of the studies: i.e. community biomass responded to only combined N and P addition, or to both N and P when added separately. Our results highlight the importance of interactions between N and P in regulating primary producer community biomass and point to the need for future studies that address the multiple mechanisms that could lead to different types of co-limitation.  相似文献   
54.
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human plasma is described. The drugs were extracted from 200 μL human plasma using liquid-liquid extraction with tertiar-butylmethylether, followed by high performance liquid chromatography analysis using 10 mM ammonium hydroxide pH 10:methanol (3:7, v/v) as mobile phase. Chromatographic separation was obtained using a Zorbax Extend C(18) column. Labelled analogues of the analytes are used as internal standards. For detection, positive ionization electrospray tandem mass spectrometry was used. Method development including optimisation of the mass transitions and response, mobile phase optimisation and column selection are discussed. The method was validated according to FDA guidelines and the principles of Good Laboratory Practice (GLP). The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel and 2-2000 ng/mL for ritonavir. For quantification, quadratic calibration curves were used (r(2)>0.99). The total runtime of the method is 9 min and the assay combines analytes with differences in ionisation and desired concentration range. Inter-assay accuracy and precision were tested at four concentration levels and were within 10% and less than 10%, respectively, for all analytes. Carry-over was less than 6% and endogenous interferences or interferences between analytes and internal standards were less than 20% of the response at the lower limit of quantification level. The matrix factor and recovery were determined at low, mid and high concentration levels. The matrix factor was around 1 for all analytes and total recovery between 77.5 and 104%. Stability was investigated in stock solutions, human plasma, dry extracts, final extracts and during 3 freeze/thaw cycles. The described method was successfully applied in clinical studies with oral administration of docetaxel or paclitaxel in combination with ritonavir.  相似文献   
55.
56.
Recent theory suggests that both biodiversity and productivity are constrained by resource supply rates and ratios and that resource stoichiometry is the key to understanding the relationship between biodiversity and productivity. We experimentally tested this theory using pelagic metacommunities. We amended existing predictions by explicitly considering evenness as an aspect of biodiversity and including control of algal biomass by consumption in addition to competition. The metacommunities received a different phosphorus (P) supply and the three patches within each metacommunity differed in their nitrogen (N) supply, which created different N∶P ratios (2, 16, and 128). All patches were inoculated with a phytoplankton assemblage consisting of five species, and half of the metacommunities received two ciliate species as consumers. At the level of the entire metacommunity, algal biomass increased with increasing P supply, whereas species richness and evenness decreased with increasing P supply. Without consumers, resource use efficiency (RUE; realized biomass per unit of P) increased with increasing richness and evenness. Consumer presence reduced overall biomass and richness and precluded a correlation between RUE and biodiversity. At the patch level, local evenness correlated with higher RUE at both imbalanced N∶P ratios (2 and 128) but not at a balanced N∶P ratio. In conclusion, overall P supply constrained realized biomass and altered diversity, whereas resource stoichiometry shaped the relationship between biodiversity and RUE.  相似文献   
57.
Metacommunity theory has advanced understanding of how spatial dynamics and local interactions shape community structure and biodiversity. Here, we review empirical approaches to metacommunities, both observational and experimental, pertaining to how well they relate to and test theoretical metacommunity paradigms and how well they capture the realities of natural ecosystems. First, we show that the species-sorting and mass-effects paradigms are the most commonly tested and supported paradigms. Second, the dynamics observed can often be ascribed to two or more of the four non-exclusive paradigms. Third, empirical approaches relate only weakly to the concise assumptions and predictions made by the paradigms. Consequently, we suggest major avenues of improvement for empirical metacommunity approaches, including the integration across theoretical approaches and the incorporation of evolutionary and meta-ecosystem dynamics. We hope for metacommunity ecology to thereby bridge existing gaps between empirical and theoretical work, thus becoming a more powerful framework to understand dynamics across ecosystems.  相似文献   
58.
The distance decay of similarity in ecological communities   总被引:11,自引:0,他引:11  
Biological similartiy typically decreases with geographical distance. Despite the recent attention to the distance decay relationship, there is no consensus on how the relationship varies across organism groups, geographic gradients and environments. We first conducted a quantitative meta-analysis of 401 distance decay relationships across a wide range of organisms, ecosystems and geographical gradients, and then united the effects of categorical and continuous variables on the rate of distance decay using a general linear model (GLM). As effect sizes we used the similarity at one km distance (initial similarity) and the distance that halves the similarity from its value at one km distance (halving distance). Both the initial similarity and halving distance were significantly affected by variables characterizing the spatial scale, organism properties, study region and ecosystem concerned. The patterns appear robust as the results of meta-analysis and GLM only differed in marginal details. According to GLM with Akaike's information criterion, the most parsimonious models explained 55.3 and 37.6% of variance in initial similarity and halving distance, respectively. Across large scales, similarity was decreasing slightly faster at high latitudes than at low latitudes, while small-scale turnover was higher at low latitudes. We also found significant differences in initial similarity among the realms, with terrestrial systems showing higher small-scale beta diversity. The decrease in community similarity at large scales was higher among organisms that are actively mobile than among passively dispersed organisms. We conclude that regression of similarity against distance unites several ecological phenomena such as dispersal propensity and environmental structuring, and provides an effective approach for gauging the spatial turnover across sites. We also found that the patterns in beta-diversity are highly scale-dependent.  相似文献   
59.
Food webs may be affected by evolutionary processes, and effective evolutionary time ultimately affects the probability of species evolving to fill the niche space. Thus, ecosystem history may set important evolutionary constraints on community composition and food web structure. Food chain length (FCL) has long been recognized as a fundamental ecosystem attribute. We examined historical effects on FCL in large lakes spanning >6 orders of magnitude in age. We found that food chains in the world's ancient lakes (n?=?8) were significantly shorter than in recently formed lakes (n?=?10) and reservoirs (n?=?3), despite the fact that ancient lakes harbored much higher species richness, including many endemic species. One potential factor leading to shorter FCL in ancient lakes is an increasing diversity of trophic omnivores and herbivores. Speciation could simply broaden the number of species within a trophic group, particularly at lower trophic levels and could also lead to a greater degree of trophic omnivory. Our results highlight a counter-intuitive and poorly-understood role of evolutionary history in shaping key food web properties such as FCL.  相似文献   
60.
Eight questions about invasions and ecosystem functioning   总被引:1,自引:0,他引:1  
I pose eight questions central to understanding how biological invasions affect ecosystems, assess progress towards answering those questions and suggest ways in which progress might be made. The questions concern the frequency with which invasions affect ecosystems; the circumstances under which ecosystem change is most likely; the functions that are most often affected by invaders; the relationships between changes to ecosystems, communities, and populations; the long-term responses of ecosystems to invasions; interactions between biological invasions and other anthropogenic activities and the difficulty of managing undesirable impacts of non-native species. Some questions have been answered satisfactorily, others require more data and thought, and others might benefit from being reformulated or abandoned. Actions that might speed progress include careful development of trait-based approaches; strategic collection and publication of new data, including more frequent publication of negative results; replacement of expert opinion with hard data where needed; careful consideration of whether questions really need to be answered, especially in cases where answers are being provided for managers and policy-makers; explicit attention to and testing of the domains of theories; integrating invasions better into an ecosystem context; and remembering that our predictive ability is limited and will remain so for the foreseeable future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号