首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   20篇
  2023年   1篇
  2021年   1篇
  2018年   4篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   13篇
  2012年   12篇
  2011年   13篇
  2010年   4篇
  2009年   5篇
  2008年   12篇
  2007年   16篇
  2006年   23篇
  2005年   19篇
  2004年   15篇
  2003年   17篇
  2002年   16篇
  2001年   5篇
  2000年   8篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有283条查询结果,搜索用时 307 毫秒
71.
Intracellular trafficking is a determining factor in the transgene expression efficiency of gene vectors. In the present study, the mechanism of the cellular uptake of octaarginine (R8)-modified liposomes, when introduced at 37 degrees C and 4 degrees C, was investigated in living cells. Compared with 37 degrees C, the uptake of R8-liposomes was only slightly reduced at 4 degrees C. Dual imaging of liposomes and plasma membranes revealed that R8-liposomes were internalized by vesicular transport, and partially escaped to the cytosol at the perinuclear region at 37 degrees C. When introduced at 4 degrees C, intracellular liposomes were observed within a specific region close to the plasma membrane, and internalization of the plasma membrane was completely inhibited. Therefore, at 4 degrees C, R8-liposomes appear to enter cells via unique pathway, which is separate and distinct from energy-dependent vesicular transport. The subsequent nuclear delivery of encapsulated pDNA, when introduced at 4 degrees C, was less prominent compared with those introduced at 37 degrees C. Collectively, these findings demonstrate that a vesicular transport-independent pathway is responsible for the cellular uptake of liposomes. In addition, the uptake route is closely related to the subsequent nuclear delivery process; the operation of an endogenous vesicular sorting system is advantageous for the nuclear delivery of pDNA.  相似文献   
72.
Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and 8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis caused by incorporation of the oxidized deoxynucleoside triphosphates.  相似文献   
73.
The human NUDT5 protein catalyzes the hydrolysis of 8-hydroxy-dGDP. To examine its substrate specificity, four oxidized deoxyribonucleotides (2-hydroxy-dADP, 8-hydroxy-dADP, 5-formyl-dUDP, and 5-hydroxy-dCDP) were incubated with the NUDT5 protein. Interestingly, all of the nucleotides, except for 5-hydroxy-dCDP, were hydrolyzed with various efficiencies. The kinetic parameters indicated that 8-hydroxy-dADP was hydrolyzed as efficiently as 8-hydroxy-dGDP. The hydrolyzing activities for their triphosphate counterparts were quite weak. These results suggest that the NUDT5 protein eliminates various oxidized deoxyribonucleoside diphosphates from the nucleotide pool and prevents their toxic effects.  相似文献   
74.
We evaluated the cytotoxic and apoptotic effects of two purine nucleoside analogues, acyclovir (ACV) and ganciclovir (GCV), on lymphoma cells stably harboring Kaposi's sarcoma-associated herpesvirus (KSHV). Colorimetric caspase assay, flow cytometry, and immunoblotting with antibodies against apoptosis-related molecules revealed that GCV has cytotoxic activity toward KSHV-infected primary effusion lymphoma cells, while ACV has weak or little activity. In addition to the GCV-induced cytotoxicity, apoptosis via caspase-7/8, cleavage of poly(ADP-ribose) polymerase, and accumulation of p53 and p21 were induced by GCV treatment. In contrast, neither ACV nor GCV have cytotoxicity- or apoptosis-inducing activities toward uninfected cells.  相似文献   
75.
The Drosophila melanogaster deoxynucleoside kinase gene was introduced into HeLa cells with cationic lipids to allow its transient expression, and cytotoxic effects of several nucleoside analogs in the transfected cells were examined. Of the analogs tested, cytotoxicities of 1-beta-D-arabinofuranosylcytosine (araC), 5-fluorodeoxyuridine (FUdR), and 1-(2-deoxy-2-methylene-beta-D-erythro-pentofuranosyl)cytosine (DMDC) were increased by the deoxynucleoside kinase gene. These results suggest that the combination of the transient expression of the Drosophila deoxynucleoside kinase gene and these nucleoside analogs is a candidate for the suicide gene therapy.  相似文献   
76.
77.
The 26 S proteasome, which catalyzes degradation of polyubiquitinated proteins, is composed of the 20 S proteasome and the 19 S regulatory particle (RP). The RP is composed of the lid and base subcomplexes and regulates the catalytic activity of the 20 S proteasome. In this study, we carried out affinity purification of the lid and base subcomplexes from the tagged strains of Saccharomyces cerevisiae, and we found that the lid contains a small molecular mass protein, Sem1. The Sem1 protein binds with the 26 S proteasome isolated from a mutant with deletion of SEM1 but not with the 26 S proteasome from the wild type. The lid lacking Sem1 is unstable at a high salt concentration. The 19 S RP was immunoprecipitated together with Sem1 by immunoprecipitation using hemagglutinin epitope-tagged Sem1 as bait. Degradation of polyubiquitinated proteins in vivo or in vitro is impaired in the Sem1-deficient 26 S proteasome. In addition, genetic interaction between SEM1 and RPN10 was detected. The human Sem1 homologue hDSS1 was found to be a functional homologue of Sem1 and capable of interacting with the human 26 S proteasome. The results suggest that Sem1, possibly hDSS1, is a novel subunit of the 26 S proteasome and plays a role in ubiquitin-dependent proteolysis.  相似文献   
78.
Liposomes are one of the most promising systems for selective cellular targeting via introduction of specific ligands for cell-surface receptors. After being taken up by the cells, these liposomes usually follow intracellular pathways of receptor-mediated endocytosis. Control of intracellular trafficking is required for optimized drug delivery. In this study, we elucidated the intracellular fate of transferrin-modified liposomes and succeeded in altering it by introducing the pH-sensitive fusogenic peptide, GALA (WEAALAEALAEALAEHLAEALAEALEALAA). Transferrins that are chemically attached to a liposomal surface (Tf-L) were internalized via receptor-mediated endocytosis more slowly than unmodified transferrins. In contrast to the recyclable nature of transferrin, liposome-attached transferrins together with encapsulated rhodamines were retained in vesicular compartments. When GALA was introduced into liposomal membranes using a cholesteryl moiety for anchoring (Chol-GALA), rhodamines were efficiently released and diffused into the cytosol. The addition of GALA to the Tf-L-containing medium or the encapsulation of GALA in Tf-L did not induce similar effects. These results clearly indicate that GALA must be present on the surface of liposomes to exert its function. In vitro energy transfer and dynamic light scattering experiments suggested that the endosomal escape of the encapsulates in Tf-L equipped with Chol-GALA can be attributed to pH-dependent membrane fusion. With GALA present on the surface, intracellular trafficking of liposomes after receptor-mediated endocytosis could be successfully controlled.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号