首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10095篇
  免费   684篇
  国内免费   11篇
  2021年   99篇
  2020年   45篇
  2019年   81篇
  2018年   104篇
  2017年   80篇
  2016年   144篇
  2015年   244篇
  2014年   286篇
  2013年   527篇
  2012年   522篇
  2011年   529篇
  2010年   299篇
  2009年   304篇
  2008年   538篇
  2007年   510篇
  2006年   563篇
  2005年   540篇
  2004年   571篇
  2003年   527篇
  2002年   503篇
  2001年   317篇
  2000年   305篇
  1999年   266篇
  1998年   141篇
  1997年   114篇
  1996年   89篇
  1995年   98篇
  1994年   90篇
  1993年   104篇
  1992年   174篇
  1991年   188篇
  1990年   167篇
  1989年   161篇
  1988年   156篇
  1987年   132篇
  1986年   110篇
  1985年   89篇
  1984年   113篇
  1983年   90篇
  1982年   61篇
  1981年   58篇
  1980年   68篇
  1979年   99篇
  1978年   74篇
  1977年   77篇
  1976年   44篇
  1975年   44篇
  1974年   46篇
  1973年   46篇
  1972年   43篇
排序方式: 共有10000条查询结果,搜索用时 300 毫秒
981.
Previously, we achieved approximately 30-fold enhanced secretion of the protease-sensitive model protein human growth hormone (hGH) by multiple gene deletion of seven obstructive proteases in the fission yeast Schizosaccharomyces pombe. However, intracellular retention of secretory hGH was found in the resultant multiprotease-deficient strains. As a solution, genetic modification of the intracellular trafficking pathway that is related to intracellular retention of hGH was attempted on a protease octuple deletant strain. Vacuolar accumulation of the intracellularly retained hGH was identified by secretory expression of hGH fused with EGFP, and three vacuolar protein sorting (vps)-deficient strains, vps10Δ, vps22Δ, and vps34Δ, were determined on account of their hGH secretion efficiency. The mutant vps10Δ was found to be effective for hGH secretion, which suggested a role for vps10 in the vacuolar accumulation of the intracellularly retained hGH. Finally, vps10 deletion was performed on the protease octuple deletant strain, which led to an approximately 2-fold increase in hGH secretion. This indicated the possible application of secretory-pathway modification and multiple protease deletion for improving heterologous protein secretion from the fission yeast S. pombe.  相似文献   
982.
Wnt5a regulates multiple intracellular signalling cascades, but how Wnt5a determines the specificity of these pathways is not well understood. This study examined whether the internalization of Wnt receptors affects the ability of Wnt5a to regulate its signalling pathways. Wnt5a activated Rac in the β‐catenin‐independent pathway, and Frizzled2 (Fz2) and Ror1 or Ror2 were required for this action. Fz2 was internalized through a clathrin‐mediated route in response to Wnt5a, and inhibition of clathrin‐dependent internalization suppressed the ability of Wnt5a to activate Rac. As another action of Wnt5a, it inhibited Wnt3a‐dependent lipoprotein receptor‐related protein 6 (LRP6) phosphorylation and β‐catenin accumulation. Wnt3a‐dependent phosphorylation of LRP6 was enhanced in Wnt5a knockout embryonic fibroblasts. Fz2 was also required for the Wnt3a‐dependent accumulation of β‐catenin, and Wnt5a competed with Wnt3a for binding to Fz2 in vitro and in intact cells, thereby inhibiting the β‐catenin pathway. This inhibitory action of Wnt5a was not affected by the impairment of clathrin‐dependent internalization. These results suggest that Wnt5a regulates distinct pathways through receptor internalization‐dependent and ‐independent mechanisms.  相似文献   
983.
Motojima F  Yoshida M 《The EMBO journal》2010,29(23):4008-4019
The current mechanistic model of chaperonin-assisted protein folding assumes that the substrate protein in the cage, formed by GroEL central cavity capped with GroES, is isolated from outside and exists as a free polypeptide. However, using ATPase-deficient GroEL mutants that keep GroES bound, we found that, in the rate-limiting intermediate of a chaperonin reaction, the unfolded polypeptide in the cage partly protrudes through a narrow space near the GroEL/GroES interface. Then, the entire polypeptide is released either into the cage or to the outside medium. The former adopts a native structure very rapidly and the latter undergoes spontaneous folding. Partition of the in-cage folding and the escape varies among substrate proteins and is affected by hydrophobic interaction between the polypeptide and GroEL cavity wall. The ATPase-active GroEL with decreased in-cage folding produced less of a native model substrate protein in Escherichia coli cells. Thus, the polypeptide in the critical GroEL-GroES complex is neither free nor completely confined in the cage, but it is interacting with GroEL's apical region, partly protruding to outside.  相似文献   
984.
Remodeling of endothelial basement membrane is important in atherogenesis. Since little is known about the actual relationship between type IV collagen and matrix metalloprotease−2 (MMP-2) in endothelial cells (ECs) under shear stress by blood flow, we performed quantitative analysis for type IV collagen and MMP-2 in ECs under high shear stress. The mRNA of type IV collagen from ECs exposed to high shear stress (10 and 30 dyn/cm2) had a higher expression compared to ECs exposed to a static condition or low shear stress (3 dyn/cm2) (P < 0.01). 3H-proline uptake analysis and fluorography revealed a remarkable increase of type IV collagen under high shear stress (P < 0.01). In contrast, zymography revealed that exposing to high shear stress, however similar positivity was leveled in the intracellular MMP-2 in the control and high shear stress-exposed ECs, reduced the secretion of MMP-2 in ECs. The results of Northern blotting, gelatin zymography and monitoring the intracellular trafficking of GFP-labeled MMP-2 revealed that MMP-2 secretion by ECs was completely suppressed by high shear stress, but the intracellular mRNA expression, protein synthesis, and transport of MMP-2 were not affected. In conclusion, we suggest that high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in ECs, which plays an important role in remodeling of the endothelial basement membrane and may suppress atherogenesis.  相似文献   
985.

Background

Various forms of cell death, such as apoptotic, autophagic and non-lysosomal types, are implicated in normal physiological processes. Apoptotic protease activating factor 1 (Apaf1) is an important component of the intrinsic apoptotic pathway. Deficiency of Apaf1 results in an accumulation of neural progenitor cells (NPCs) in the developing central nervous system and thus, in perinatal lethality. A small percentage of the mutant mice, however, are viable and grow to maturity. The occurrence of such normal mutants implicates alternative cell death pathways during neurogenesis.

Methods

NPCs prepared from wild-type or Apaf1-deficient embryos were cultured in growth factor-deprived medium and examined for cell death, caspase activation and morphological alterations. Generation of reactive oxygen species (ROS) and the effects of antioxidants were examined.

Results

Wild-type NPCs underwent apoptosis within 24 hours of withdrawal of epidermal growth factor (EGF) or insulin, whereas Apaf1-deficient NPCs underwent cell death but showed no signs of apoptosis. Autophagy was not necessarily accompanied by cell death. Cell death of the Apaf1-deficient NPCs resembled necroptosis—necrosis-like programmed cell death. The necroptosis inhibitor necrostatin-1, however, failed to inhibit the cell death. ROS accumulation was detected in NPCs deprived of growth factors, and an antioxidant partially suppressed the non-apoptotic cell death of Apaf1-deficient NPCs.

Conclusions

These data indicate that after withdrawal EGF or insulin withdrawal, the Apaf1-deficient cells underwent non-apoptotic cell death. ROS generation may partially participate in the cell death.

General Significance

Non-apoptotic cell death in NPCs may be a compensatory mechanism in the developing CNS of Apaf1-deficient embryos.  相似文献   
986.
Protein quality control in the endoplasmic reticulum (ER) is an elaborate process conserved from yeast to mammals, ensuring that only newly synthesized proteins with correct conformations in the ER are sorted further into the secretory pathway. It is well known that high-mannose type N-glycans are involved in protein-folding events. In the quality control process, proteins that fail to achieve proper folding or proper assembly are degraded in a process known as ER-associated degradation (ERAD). The ERAD pathway comprises multiple steps including substrate recognition and targeting to the retro-translocation machinery, retrotranslocation from the ER into the cytosol, and proteasomal degradation through ubiquitination. Recent studies have documented the important roles of sugar-recognition (lectin-type) molecules for trimmed high-mannose type N-glycans and glycosidases in the ERAD pathways in both ER and cytosol. In this review, we discuss a fundamental system that monitors glycoprotein folding in the ER and the unique roles of the sugar-recognizing ubiquitin ligase and peptide:N-glycanase (PNGase) in the cytosolic ERAD pathway.  相似文献   
987.
988.
989.
990.
The R3 subtype of receptor-type protein tyrosine phosphatases (RPTPs) includes VE-PTP, DEP-1, PTPRO, and SAP-1. All of these enzymes share a similar structure, with a single catalytic domain and putative tyrosine phosphorylation sites in the cytoplasmic region and fibronectin type III–like domains in the extracellular region. The expression of each R3 RPTP is largely restricted to a single or limited number of cell types, with VE-PTP and DEP-1 being expressed in endothelial or hematopoietic cells, PTPRO in neurons and in podocytes of the renal glomerulus, and SAP-1 in gastrointestinal epithelial cells. In addition, these RPTPs are localized specifically at the apical surface of polarized cells. The structure, expression, and localization of the R3 RPTPs suggest that they perform tissue-specific functions and that they might act through a common mechanism that includes activation of Src family kinases. In this review, we describe recent insights into R3-subtype RPTPs, particularly those of mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号