首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   6篇
  2021年   3篇
  2020年   3篇
  2015年   1篇
  2014年   4篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.

Background and aims

Inoculation of legumes at sowing with rhizobia has arguably been one of the most cost-effective practices in modern agriculture. Critical aspects of inoculant quality are rhizobial counts at manufacture/registration and shelf (product) life.

Methods

In order to re-evaluate the Australian standards for peat-based inoculants, we assessed numbers of rhizobia (rhizobial counts) and presence of contaminants in 1,234 individual packets of peat–based inoculants from 13 different inoculant groups that were either freshly manufactured or had been stored at 4 °C for up to 38 months to determine (a) rates of decline of rhizobial populations, and (b) effects of presence of contaminants on rhizobial populations. We also assessed effects of inoculant age on survival of the rhizobia during and immediately after inoculation of polyethylene beads.

Results

Rhizobial populations in the peat inoculants at manufacture and decline rates varied substantially amongst the 13 inoculant groups. The most stable were Sinorhizobium, Bradyrhizobium and Mesorhizobium with Rhizobium, particularly R. leguminosarum bv. trifolii the least stable. The presence of contaminants at the 10?6 level of dilution, i.e. >log 6.7 g?1 peat, reduced rhizobial numbers in the stored inoculants by an average of 37 %. Survival on beads following inoculation improved 2–3 fold with increasing age of inoculant.

Conclusions

We concluded that the Australian standards for peat-based rhizobial inoculants should be reassessed to account for the large differences amongst the groups in counts at manufacture and survival rates during storage. Key recommendations are to increase expiry counts from log 8.0 to log 8.7 rhizobia g?1 peat and to have four levels of inoculant shelf life ranging from 12 months to 3 years.  相似文献   
12.
The economy of C and N in nodulated cowpea (Vigna unguiculata [L.] Walp.) was described in terms of fixation of CO2 and N2, respiratory losses of C, and the production of dry matter and protein.  相似文献   
13.
14.
Ciliopathies are characterized by a pattern of multisystem involvement that is consistent with the developmental role of the primary cilium. Within this biological module, mutations in genes that encode components of the cilium and its anchoring structure, the basal body, are the major contributors to both disease causality and modification. However, despite rapid advances in this field, the majority of the genes that drive ciliopathies and the mechanisms that govern the pronounced phenotypic variability of this group of disorders remain poorly understood. Here, we show that mutations in CSPP1, which encodes a core centrosomal protein, are disease causing on the basis of the independent identification of two homozygous truncating mutations in three consanguineous families (one Arab and two Hutterite) affected by variable ciliopathy phenotypes ranging from Joubert syndrome to the more severe Meckel-Gruber syndrome with perinatal lethality and occipital encephalocele. Consistent with the recently described role of CSPP1 in ciliogenesis, we show that mutant fibroblasts from one affected individual have severely impaired ciliogenesis with concomitant defects in sonic hedgehog (SHH) signaling. Our results expand the list of centrosomal proteins implicated in human ciliopathies.  相似文献   
15.
Data collated from around the world indicate that, for every tonne of shoot dry matter produced by crop legumes, the symbiotic relationship with rhizobia is responsible for fixing, on average on a whole plant basis (shoots and nodulated roots), the equivalent of 30–40 kg of nitrogen (N). Consequently, factors that directly influence legume growth (e.g. water and nutrient availability, disease incidence and pests) tend to be the main determinants of the amounts of N2 fixed. However, practices that either limit the presence of effective rhizobia in the soil (no inoculation, poor inoculant quality), increase soil concentrations of nitrate (excessive tillage, extended fallows, fertilizer N), or enhance competition for soil mineral N (intercropping legumes with cereals) can also be critical. Much of the N2 fixed by the legume is usually removed at harvest in high-protein seed so that the net residual contributions of fixed N to agricultural soils after the harvest of legumegrain may be relatively small.Nonetheless, the inclusion of legumes in a cropping sequence generally improves the productivity of following crops. Whilesome of these rotational effects may be associated with improvements in availability of N in soils, factors unrelated to N also play an important role. Recent results suggest that one such non-N benefit may be due to the impact on soil biology of hydrogenemitted from nodules as a by-product of N2, fixation.  相似文献   
16.
Sexually selected ornaments are highly variable and the factors that drive variation in ornament expression are not always clear. Rare instances of female-specific ornament evolution (such as in some dance fly species) are particularly puzzling. While some evidence suggests that such rare instances represent straightforward reversals of sexual selection intensity, the distinct nature of trade-offs between ornaments and offspring pose special constraints in females. To examine whether competition for access to mates generally favors heightened ornament expression, we built a phylogeny and conducted a comparative analysis of Empidinae dance fly taxa that display female-specific ornaments. We show that species with more female-biased operational sex ratios in lek-like mating swarms have greater female ornamentation, and in taxa with more ornate females, male relative testis investment is increased. These findings support the hypothesis that ornament diversity in dance flies depends on female receptivity to mates, which is associated with contests for nutritious nuptial gifts provided by males. Moreover, our results suggest that increases in female receptivity lead to higher levels of sperm competition among males. The incidence of both heightened premating sexual selection on females and postmating selection on males contradicts assertions that sex roles are straightforwardly reversed in dance flies.  相似文献   
17.
18.
19.
Khan  Dil F.  Peoples  Mark B.  Chalk  Phillip M.  Herridge  David F. 《Plant and Soil》2002,239(2):277-289
Accurate information on below-ground nitrogen (N) of legumes is necessary for quantifying legume effects on soil N pools and on the N economies of crops following legumes in rotation systems. We report a series of glasshouse pot experiments to determine below-ground N (BGN) of the four legumes, fababean (Vicia faba), chickpea (Cicer arietinum), mungbean (Vigna radiata) and pigeonpea (Cajanus cajan) using both 15N shoot-labelling and 15N-labelled soil isotope-dilution methods, a mass N balance approach and the physical recovery of nodulated roots. Data from the 15N shoot-labelling experiment were manipulated in different ways in an attempt to counter errors associated with uneven 15N enrichment of roots and nodules. Values for BGN as percent of total plant N based on the physical recovery of nodulated roots ranged from 4 to 15%. With 15N shoot-labelling, a total of 8.11 mg 15N was supplied to each pot (six plants) as 0.5% 15N urea using either leaf-flap (fababean, mungbean and pigeonpea), petiole (chickpea) or leaf-tip (wheat) feeding. Calculations based on measurement of 15N enrichments of harvested plant parts and root-zone soil suggested that BGN represented 39% of total plant N for fababean, 53% for chickpea, 20% for mungbean and 47% for pigeonpea. The value for wheat was 60%. Adjustment for uneven nodulation patterns on the roots and nodule 15N depletion, resulting in different 15N enrichments between nodulated and unnodulated roots, reduced the fababean value to 37% and chickpea to 42%. Values using the other methods were generally in the same range, viz. 15–57% (simple 15N balance), 11–52% (soil 15N dilution) and 30–52% (mass N balance). We conclude that physical recovery of roots was the most inaccurate method for estimating BGN. Average values for BGN as percent of total plant N using all isotopic and mass N balance methods were 30% for fababean, 48% for chickpea, 28% for mungbean, and 43% for pigeonpea.15N shoot-labelling may be the best method for quantifying BGN of field-grown plants. The methodology is simple, apparently accurate provided care is taken in obtaining representative nodulated root samples and, unlike the soil 15N dilution method, does not require pre-treatment of the soil with 15N enriched material.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号