首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   17篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
排序方式: 共有97条查询结果,搜索用时 312 毫秒
41.
The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order in protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.  相似文献   
42.
Lipid-protein model membranes, prepared from bovine brain white matter and containing all the lipids and Folch-Lees proteolipids, have been studied in macroscopically oriented multibilayers. To examine the lipid environment the membranes were spin labeled with the cholestane spin label (3-spiro(2′-(N-oxyl-4′,4′-dimethyl-oxazolidine))5α-cholestane) and a fatty acid spin label (4′-,4′-dimethyloxazolidine-N-oxyl derivative of 5-ketostearic acid). The ESR spectra exhibit two components arising from fairly well oriented and completely unoriented lipids. Up to a temperature of 55°C the amount of oriented lipids is almost constant, being about 35%. At higher temperatures this percentage drops rapidly to zero. It is shown that the presence of unoriented lipids arises mainly from disrupted areas in the lipid bilayer structure. This is confirmed by electron microscopy and from an analysis of the temperature dependence of the order parameters of the spin labels. The presence of locally disrupted lipid parts in the bilayer is discussed in relation to the interaction of the brain white matter lipids with Folch-Lees protein.  相似文献   
43.
Fourier transform nuclear magnetic resonance studies on 12% 13C-enriched tobacco mosaic virus (TMV) and its rod-like protein oligomers in solution with molecular weights up to 42 X 10(6) are reported. In the virus approximately 17% of the carbons of the protein subunit have line widths of less than or equal to 300 Hz and T1 less than or equal to 1 s and are concluded to be mobile with more than one degree of freedom of internal rotation about a carbon--carbon bond. In the rodlike polymer of TMV protein at pH 5.3, 30% of the carbons are mobile, which implies rotational motions about carbon--carbon bonds and/or motions of the protein subunits within the polymer. The presence of internal mobility is supported by the observation that 20% of the carbons in the double disklike oligomer show decreasing line width upon increasing temperature; the remaining resonances have line widths which are temperature independent during the double disklike polymerization process. Since the molecular weight of TMV protein polymers increases with increasing temperature, this demonstrates that all nuclei within the double dislike oligomer are mobile. NMR and X-ray data on the double disklike polymer reveal differences with respect to internal mobility.  相似文献   
44.
The coat protein of Tobacco Mosaic Virus is covalently labeled with a maleimide spin label at the single SH-group of the protein. Saturation transfer electron paramagnetic resonance spectroscopy, a technique that is sensitive to very slow molecular motion with rotational correlation times τc in the range 10?7 to 10?3 sec, shows the dissociation of large oligomers of spin labeled protein with τc~10?4 sec at pH 5.5 to smaller oligomers at higher pH.  相似文献   
45.
46.
As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.  相似文献   
47.
Bacteriophage M13 major coat protein is extensively used as a biophysical, biochemical, and molecular biology reference system for studying membrane proteins. The protein has several elements that control its position and orientation in a lipid bilayer. The N-terminus is dominated by the presence of negatively charged amino acid residues (Glu2, Asp4, and Asp5), which will always try to extend into the aqueous phase and therefore act as a hydrophilic anchor. The amphipathic and the hydrophobic transmembrane part contain the most important hydrophobic anchoring elements. In addition there are specific aromatic and charged amino acid residues in these domains (Phe 11, Tyr21, Tyr24, Trp26, Phe42, Phe45, Lys40, Lys43, and Lys44) that fine-tune the association of the protein to the lipid bilayer. The interfacial Tyr residues are important recognition elements for precise protein positioning, a function that cannot be performed optimally by residues with an aliphatic character. The Trp26 anchor is not very strong: depending on the context, the tryptophan residue may move in or out of the membrane. On the other hand, Lys residues and Phe residues at the C-terminus of the protein act in a unique concerted action to strongly anchor the protein in the lipid bilayer.  相似文献   
48.
Bacteriophage M13 major coat protein was reconstituted in different nonmatching binary lipid mixtures composed of 14:1PC and 22:1PC lipid bilayers. Challenged by this lose-lose situation of hydrophobic mismatch, the protein-lipid interactions are monitored by CD and site-directed spin-label electron spin resonance spectroscopy of spin-labeled site-specific single cysteine mutants located in the C-terminal protein domain embedded in the hydrophobic core of the membrane (I39C) and at the lipid-water interface (T46C). The CD spectra indicate an overall α-helical conformation irrespective of the composition of the binary lipid mixture. Spin-labeled protein mutant I39C senses the phase transition in 22:1PC, in contrast to spin-labeled protein mutant T46C, which is not affected by the transition. The results of both CD and electron spin resonance spectroscopy clearly indicate that the protein preferentially partitions into the shorter 14:1PC both above and below the gel-to-liquid crystalline phase transition temperature of 22:1PC. This preference is related to the protein tilt angle and energy penalty the protein has to pay in the thicker 22:1PC. Given the fact that in Escherichia coli, which is the host for M13 bacteriophage, it is easier to find shorter 14 carbon acyl chains than longer 22 carbon acyl chains, the choice the M13 coat protein makes seems to be evolutionary justified.  相似文献   
49.
The V-ATPases are ATP-dependent proton pumps, found in virtually all cells, responsible for acidification of organelles and energizing of plasma membranes. Its role in diseases, such as osteoporosis and metastatic cancer, makes the V-ATPase a potential drug target. Short synthetic peptides that are presented here mimic the 7th transmembrane domain (TM7) of subunit a (Vph1p) of Saccharomyces cerevisiae V-ATPase, an essential part of the membrane-bound VO domain, where proton translocation takes place. The peptides adopt a transmembrane configuration only in membranes containing anionic lipids, stressing the importance of strong interfacial anchoring by the flanking lysines. Peptide P1, which contains the essential arginine R735, is monomeric, whereas peptide P2, which lacks this extra charge, tends to aggregate in the membrane. SB 242784, which is a highly potent inhibitor of V-ATPase, does not show any interaction with the peptides, indicating that TM7 alone is not sufficient for inhibitor binding.  相似文献   
50.
The M13 major coat protein has been extensively studied in detergent-based and phospholipid model systems to elucidate its structure. This resulted in an L-shaped model structure of the protein in membranes. An amphipathic alpha-helical N-terminal arm, which is parallel to the surface of the membrane, is connected via a flexible linker to an alpha-helical transmembrane domain. In the present study, a fluorescence polarity probe or ESR spin probe is attached to the SH group of a series of N-terminal single cysteine mutants, which were reconstituted into DOPC model membranes. With ESR spectroscopy, we measured the local mobility of N-terminal positions of the protein in the membrane. This is supplemented with relative depth measurements at these positions by fluorescence spectroscopy via the wavelength of maximum emission and fluorescence quenching. Results show the existence of at least two possible configurations of the M13 amphipathic N-terminal arm on the ESR time scale. The arm is bound either to the membrane surface or in the water phase. The removal or addition of a hydrophobic membrane-anchor by site-specific mutagenesis changes the ratio between the membrane-bound and the water phase fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号