首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3238篇
  免费   257篇
  2021年   25篇
  2020年   21篇
  2019年   20篇
  2018年   39篇
  2017年   36篇
  2016年   49篇
  2015年   92篇
  2014年   115篇
  2013年   166篇
  2012年   168篇
  2011年   172篇
  2010年   101篇
  2009年   92篇
  2008年   149篇
  2007年   205篇
  2006年   186篇
  2005年   167篇
  2004年   166篇
  2003年   147篇
  2002年   140篇
  2001年   43篇
  2000年   41篇
  1999年   47篇
  1998年   36篇
  1997年   38篇
  1996年   31篇
  1995年   39篇
  1994年   30篇
  1993年   44篇
  1992年   21篇
  1991年   23篇
  1990年   31篇
  1989年   36篇
  1988年   44篇
  1987年   35篇
  1986年   18篇
  1985年   32篇
  1984年   29篇
  1983年   40篇
  1982年   39篇
  1981年   38篇
  1980年   38篇
  1979年   28篇
  1978年   33篇
  1977年   28篇
  1976年   21篇
  1975年   24篇
  1973年   24篇
  1970年   18篇
  1967年   18篇
排序方式: 共有3495条查询结果,搜索用时 15 毫秒
991.
The nature of chiral interactions among chiral biopolymers, such as DNA, protein alpha-helices, and rodlike virus particles, remains elusive. In particular, a satisfactory model connecting molecular chiral interactions and the pitch of the resulting chiral mesophases is lacking. We report the measurement of short-fragment (146-bp) DNA cholesteric spherulite pitch as a function of osmotic pressure, average DNA interaxial spacing, and salt concentration. We determined cholesteric pitch and interaxial spacing by polarizing optical microscopy and x-ray scattering, respectively, from which the twist-angle between DNA molecules can be calculated. Surprisingly, we found that decreasing ionic strength resulted in weaker chiral interactions between DNA chains, as evidenced by the decrease in the twist-angle, and consequent increase in the cholesteric pitch, for a fixed interaxial spacing. We propose that this behavior can be explained by increased smearing-out of the helical charge pattern along DNA as the Debye screening length is increased.  相似文献   
992.
Recently, we have shown that SOCS-1/3 overexpression in hepatic cells abrogates signaling of type I interferons (IFN) which may contribute to the frequently observed IFN resistance of hepatitis C virus (HCV). IFN-lambdas (IL-28A/B and IL-29), a novel group of IFNs, also efficiently inhibit HCV replication in vitro with potentially less hematopoietic side effects than IFN-alpha because of limited receptor expression in hematopoietic cells. To further evaluate the potential of IFN-lambdas in chronic viral hepatitis, we examined the influence of SOCS protein expression on IFN-lambda signaling. First, we show that hepatic cell lines express the IFN-lambda receptor complex consisting of IFN-lambdaR1 (IL-28R1) and IL-10R2. Whereas in mock-transfected HepG2 cells, IL-28A and IL-29 induced STAT1 and STAT3 phosphorylation, overexpression of SOCS-1 completely abrogated IL-28A and IL-29-induced STAT1/3 phosphorylation. Similarly, IL-28A and IL-29 induced mRNA expression of the antiviral proteins 2',5'-OAS and MxA was abolished by overexpression of SOCS-1. In conclusion, we assume that despite antiviral properties of IFN-lambdas, their efficacy as antiviral agents may have similar limitations as IFN-alpha due to inhibition by SOCS proteins.  相似文献   
993.
Nuclear accumulation of heat shock protein (HSP) 72 occurs after cardiac ischemia. This nuclear accumulation of HSP72 with stress occurs in other tissues and species. We postulated that nuclear accumulation of HSP72 was important for the protective effect of HSP72 and that phosphorylation of a single tyrosine (Y(524)) regulated nuclear accumulation of HSP72. Western blots of immunoprecipitated HSP72 from Cos-1 cells demonstrated that tyrosine becomes phosphorylated after heat shock. Treatment with the tyrosine kinase inhibitor geldanamycin blocked nuclear accumulation of HSP72 with heat shock. Two epitope-tagged constructs were made: M17 converting Y(524) to aspartic acid (pseudophosphorylation) and M18 converting Y(524) to phenylalanine. When transfected into Cos-1 cells, M17 accumulates more rapidly and M18 less rapidly than wild-type (WT) HSP72 in the nucleus following heat shock. Cells expressing M18 had less viability after heat shock at 43.5 degrees C than other constructs. After heat shock at 45 degrees C, cells expressing M17 had superior survival compared with WT and M18. These data suggest that phosphorylation at Y(524) facilitates nuclear accumulation of HSP72 following heat stress, and substitution of aspartic acid at Y(524) enhances resistance to heat-shock injury.  相似文献   
994.
Lipopolysaccharide (LPS) of Escherichia coli strain 2513 (R4 core-type) yielded after alkaline deacylation one major oligosaccharide by high-performance anion-exchange chromatography (HPAEC) which had a molecular mass of 2486.59 Da as determined by electrospray ionization mass spectrometry. This was in accordance with the calculated molecular mass of a tetraphosphorylated dodecasaccharide of the composition shown below. NMR-analyses identified the chemical structure as where l-alpha-d-Hep is l-glycero-alpha-d-manno-heptopyranose and Kdo is 3-deoxy-alpha-d-manno-oct-2-ulopyranosylonic acid and all hexoses are present as d-pyranoses. We have also isolated the complete core-oligosaccharides of E. coli F653 LPS for which only preliminary data were available and investigated the deacylated LPS by NMR and MS. The proposed structure determined previously by methylation analysis was confirmed and is shown below. In addition we have quantified the side-chain heptose substitution of the inner core with GlcpN ( approximately 30%) and confirmed that this sugar is only present when the phosphate at the second l,d-Hepp residue is absent.  相似文献   
995.
Small Rho GTPases are key regulators of the cytoskeleton in a great variety of cells. Rho function mediates morphological changes as well as locomotor activity. Using astrocyte cultures established from neonatal mice we investigated the role of Rho in process formation during astrocyte stellation. Using a scratch-wound model, we examined the impact of Rho on a variety of morphological and functional variables such as stellation and migratory activity during wound healing. C3 proteins are widely used to study cellular Rho functions. In addition, C3 derived from Clostridium botulinum (C3bot) is considered selectively to promote neuronal regeneration. Because the latter requires a balanced activity of neurones and glial cells, the effects of C3 protein on glial cells such as astrocytes have to be considered carefully. Low nanomolar concentrations of C3 proteins significantly promoted process outgrowth and increased process branching. Besides enzymatic inactivation of Rho by ADP-ribosylation, changes in protein levels of the various Rho GTPases may also contribute to the observed effects. Furthermore, incubation of scratch-wounded astrocyte cultures with C3bot accelerated wound healing. By inhibiting the Rho downstream effector ROCK with the selective inhibitor Y27632 we were able to demonstrate that the accelerated wound closure resulted from both enhanced polarized process formation and increased migratory activity of astrocytes into the lesion site. These results suggest that Rho negatively regulates astrocytic process growth and migratory responses after injury and that its inactivation by C3bot in nanomolar concentrations promotes astrocyte migration.  相似文献   
996.
Permanent congenital hypothyroidism is the most prevalent inborn endocrine disorder, and principally due to developmental defects leading to absent, ectopic or hypoplastic thyroid gland. Although commonly regarded as sporadic disease, nonsyndromic thyroid hypoplasia has, in rare cases, been attributed to inherited defects in PAX8 and the TSHR gene. The shared clinical picture caused by these defects is a variable degree of thyrotropin resistance (RTSH [MIM 275200]), accompanied in its severe form by thyroid gland hypoplasia. We recently identified six extended kindreds with autosomal dominant RTSH, only one of which was linked to a mutation in the PAX8 candidate gene. Genome wide scans conducted in two of the remaining five families revealed independently significant linkage to chromosome 15q25.3–26.1, with maximum multipoint LOD scores of 8.51 and 4.31. Linkage to this novel locus was replicated (P<0.01) in each of the three remaining kindreds. Fine mapping of key recombinants in the largest family localized the causative gene within a 3 cM/2.9 Mb interval. Thus, we report the first locus for congenital nongoitrous hypothyroidism identified by a genome wide screening approach.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Helmut Grasberger Martine Vaxillaire have contributed equally to this work.  相似文献   
997.
The effect of grazing and nutrient supply on periphyton associated bacteria   总被引:1,自引:0,他引:1  
The effects of nutrient additions and grazing by macro-invertebrates on periphyton-associated algae and bacteria were studied by performing an enclosure experiment on three occasions from early spring to summer at mesotrophic Lake Erken and V?dd?, at the Swedish Baltic coast. There were significant interactions between nutrient additions and grazing on bacterial biomass and specific activity in Lake Erken. Thus, the importance of either bottom-up or top-down effects could not be singled out. Bacterial biomass increased with enrichment only in the absence of grazers. Grazer presence tended to increase bacterial biomass in ambient nutrient conditions, but to decrease bacterial biomass under enrichment. For specific activity the positive response to enrichment was restricted to grazer presence. Hence, grazing by macro-invertebrates may have an indirect positive effect on bacterial activity by enhancing nutrient conditions through their feeding activities and/or fecal pellets production. In addition, we found a significant relationship between bacterial production and chlorophyll a at both sites. This relationship weakened in the presence of macro-invertebrates. Thus, the importance of internal nutrient regeneration by bacteria and algae decreased, possibly due to increased nutrient availability, in the presence of macro-invertebrate grazers.  相似文献   
998.
Gastric acid secretion is activated by two distinct pathways: a neuronal pathway via the vagus nerve and release of acetylcholine and an endocrine pathway involving gastrin and histamine. Recently, we demonstrated that activation of H(+)-K(+)-ATPase activity in parietal cells in freshly isolated rat gastric glands is modulated by the calcium-sensing receptor (CaSR). Here, we investigated if the CaSR is functionally expressed in freshly isolated gastric glands from human patients undergoing surgery and if the CaSR is influencing histamine-induced activation of H(+)-K(+)-ATPase activity. In tissue samples obtained from patients, immunohistochemistry demonstrated the expression in parietal cells of both subunits of gastric H(+)-K(+)-ATPase and the CaSR. Functional experiments using the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein and measurement of intracellular pH changes allowed us to estimate the activity of H(+)-K(+)-ATPase in single freshly isolated human gastric glands. Under control conditions, H(+)-K(+)-ATPase activity was stimulated by histamine (100 microM) and inhibited by omeprazole (100 microM). Reduction of the extracellular divalent cation concentration (0 Mg(2+), 100 microM Ca(2+)) inactivated the CaSR and reduced histamine-induced activation of H(+)-K(+)-ATPase activity. In contrast, activation of the CaSR with the trivalent cation Gd(3+) caused activation of omeprazole-sensitive H(+)-K(+)-ATPase activity even in the absence of histamine and under conditions of low extracellular divalent cations. This stimulation was not due to release of histamine from neighbouring enterochromaffin-like cells as the stimulation persisted in the presence of the H(2) receptor antagonist cimetidine (100 microM). Furthermore, intracellular calcium measurements with fura-2 and fluo-4 showed that activation of the CaSR by Gd(3+) led to a sustained increase in intracellular Ca(2+) even under conditions of low extracellular divalent cations. These experiments demonstrate the presence of a functional CaSR in the human stomach and show that this receptor may modulate the activity of acid-secreting H(+)-K(+)-ATPase in parietal cells. Furthermore, our results show the viability of freshly isolated human gastric glands and may allow the use of this preparation for experiments investigating the physiological regulation and properties of human gastric glands in vitro.  相似文献   
999.
To identify specific marker sequences for the rapid identification of Oenococcus oeni, we sequenced the 23S-5S internal transcribed spacer (ITS-2) region and the 5S rDNA of five different O. oeni strains and three phylogenetically related lactic acid bacteria (LAB). Comparative analysis revealed 100% identity among the ITS-2 region of the O. oeni strains and remarkable differences in length and sequence compared to related LAB. These results enabled us to develop a primer set for a rapid PCR-identification of O. oeni within three hours. Moreover, the comparison of the 5S rDNA sequences and the highly conserved secondary structure provided the template for the design of three fluorescence-labeled specific oligonucleotides for fluorescence in situ hybridization (FISH). These probes are partial complementary to each other. This feature promotes the accessibility to the target sequence within the ribosome and enhances the fluorescence signal. For the rapid identification of Oenococci both the 5S rRNA gene and the ITS-2 region are useful targets.  相似文献   
1000.
The presequence translocase of the inner mitochondrial membrane (TIM23 complex) operates at a central junction of protein import. It accepts preproteins from the outer membrane TOM complex and directs them to inner membrane insertion or, in cooperation with the presequence translocase-associated motor (PAM), to the matrix. Little is known of how the TIM23 complex coordinates these tasks. We have identified Tim21 (YGR033c) that interacts with the TOM complex. Tim21 is specific for a TIM23 form that cooperates with TOM and promotes inner membrane insertion. Protein translocation into the matrix requires a switch to a Tim21-free, PAM bound presequence translocase. Tim17 is crucial for the switch by performing two separable functions: promotion of inner membrane insertion and binding of Pam18 to form the functional TIM-PAM complex. Thus, the presequence translocase is not a static complex but switches between TOM tethering and PAM binding in a reaction cycle involving Tim21 and Tim17.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号