首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   6篇
  2019年   2篇
  2017年   1篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   6篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   12篇
  2006年   3篇
  2005年   6篇
  2004年   10篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   4篇
  1995年   4篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1966年   2篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
11.
We report a novel autosomal recessive disorder characterized by premature chromosome condensation in the early G2 phase. It was observed in two siblings, from consanguineous parents, affected with microcephaly, growth retardation, and severe mental retardation. Chromosome analysis showed a high frequency of prophase-like cells (>10%) in lymphocytes, fibroblasts, and lymphoblast cell lines with an otherwise normal karyotype. (3)H-thymidine-pulse labeling and autoradiography showed that, 2 h after the pulse, 28%-35% of the prophases were labeled, compared with 9%-11% in healthy control subjects, indicating that the phenomenon is due to premature chromosome condensation. Flow cytometry studies demonstrate that the entire cell cycle is not prolonged, compared with that in healthy control subjects, and compartment sizes did not differ from those in healthy control subjects. No increased reaction of the cells to X-irradiation or treatments with the clastogens bleomycin and mitomycin C was observed, in contrast to results in the cell-cycle mutants ataxia telangiectasia and Fanconi anemia. The rates of sister chromatid exchanges and the mitotic nondisjunction rates were inconspicuous. Premature entry of cells into mitosis suggests that a gene involved in cell-cycle regulation is mutated in these siblings.  相似文献   
12.
Transfection of mammalian cells with preformed small interfering RNAs (siRNAs) permits a transient and often specific reduction of gene expression. It is possible to rapidly examine the uptake of siRNAs by transfection with fluorescently labeled siRNAs. We examined the apparent uptake of such siRNAs by several leukemic cell lines after electroporation. We show that Cy3 and Cy5-labeled siRNAs cause a significant amount of cell fluorescence, as judged by flow cytometry. In contrast, several fluorescein-labeled siRNAs could not be detected. Nevertheless, such fluoresceinated siRNAs efficiently suppressed a leukemic target gene, demonstrating that siRNA uptake must have taken place. Therefore, for cell electroporation, fluorescein-labeled siRNAs may lead to false negative results and should not be used to examine electroporation-mediated siRNA uptake.  相似文献   
13.
Background: Increase of antibiotic resistance is a worldwide problem. Within the 4 years before the turn of the millennium Helicobacter pylori strains isolated in children living in Vienna, Austria, showed a primary clarithromycin and metronidazole resistance of 20% and 16%, respectively. The aim of this retrospective follow‐up survey was to assess the further development and current antimicrobial resistance status. Methods: Children having undergone upper endoscopy between March 2002 and March 2008 at the same two co‐operating pediatric gastroenterology units which had also been collaborating on the prior assessment were included. H. pylori infection was diagnosed by rapid urease test, histology, and culture. If the latter was positive, susceptibility testing to amoxicillin, clarithromycin and metronidazole by E‐test followed. From March 2004 onwards, susceptibility to levofloxacin, tetracycline and rifampin was additionally assessed. Results: Out of 897 children, 153 had a proven infection with H. pylori and no history of prior eradication treatment. Their median age was 11.5 years (range 0.5–20.9 years). Primary resistance to clarithromycin and metronidazole were 34% and 22.9%, respectively; dual resistance was found in 9.8% of the strains; 0.9% was resistant to tetracycline and rifampin, respectively. No case of amoxicillin resistance was detected. The only independent risk factor for clarithromycin resistance turned out to be the origin of a child from Austrian parents. Conclusions: In the last decade, the rate of primary resistance of H. pylori to clarithromycin continued to rise. No significant change was found regarding primary resistance to metronidazole or dual resistance to metronidazole and clarithromycin, respectively.  相似文献   
14.
Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.10-0.40 atom/subunit), purified preparations of E154C exhibited a constant catalytic Zn2+ centre activity (kcat) of 1.19+/-0.03 s(-1) and did not require exogenous Zn2+ for activity or stability. E154C retained 0.019+/-0.003% and 0.74+/-0.03% of wild-type catalytic efficiency (kcat/K(sorbitol)=7800+/-700 M(-1) x s(-1)) and kcat (=161+/-4 s(-1)) for NAD+-dependent oxidation of sorbitol at 25 degrees C respectively. The pH profile of kcat/K(sorbitol) for E154C decreased below an apparent pK of 9.1+/-0.3, reflecting a shift in pK by about +1.7-1.9 pH units compared with the corresponding pH profiles for GmXDH and sheep liver sorbitol dehydrogenase (termed slSDH). The difference in pK for profiles determined in 1H2O and 2H2O solvent was similar and unusually small for all three enzymes (approximately +0.2 log units), suggesting that the observed pK in the binary enzyme-NAD+ complexes could be due to Zn2+-bound water. Under conditions eliminating their different pH-dependences, wild-type and mutant GmXDH displayed similar primary and solvent deuterium kinetic isotope effects of 1.7+/-0.2 (E154C, 1.7+/-0.1) and 1.9+/-0.3 (E154C, 2.4+/-0.2) on kcat/K(sorbitol) respectively. Transient kinetic studies of NAD+ reduction and proton release during sorbitol oxidation by slSDH at pH 8.2 show that two protons are lost with a rate constant of 687+/-12 s(-1) in the pre-steady state, which features a turnover of 0.9+/-0.1 enzyme equivalents as NADH was produced with a rate constant of 409+/-3 s(-1). The results support an auxiliary participation of Glu154 in catalysis, and possible mechanisms of proton transfer in sorbitol/xylitol dehydrogenases are discussed.  相似文献   
15.
The shikimate pathway is essential for the biosynthesis of aromatic compounds. The seventh and last step is catalysed by chorismate synthase, which has an absolute requirement for reduced FMN in its active site. There are two classes of this enzyme, which are distinguished according to the origin of the reduced cofactor. Monofunctional chorismate synthases sequester it from the cellular environment whereas bifunctional enzymes can generate reduced FMN at the expense of NADPH. These bifunctional enzymes are found in fungi and the ciliated protozoan Euglena gracilis while all bacterial and plant enzymes are monofunctional. In this study, we introduce an in vivo screen, which is based on a chorismate synthase-deficient Saccharomyces cerevisiae strain, allowing the classification of hitherto uncharacterized chorismate synthases. This analysis revealed that bifunctionality is present in the enzymes of protozoan species. In contrast, all bacterial and plant enzymes tested are monofunctional. In addition, we demonstrate that a monofunctional chorismate synthase confers prototrophy in conjunction with a NADPH : FMN oxidoreductase indicating that bifunctionality is required due to the lack of free reduced FMN in fungal and possibly protozoan species. Interestingly, the distribution of bifunctional chorismate synthase concurs with the presence of a pentafunctional enzyme complex.  相似文献   
16.
IntroductionDisease activity and therapy show an impact on cellular and serological parameters in patients with systemic lupus erythematosus (SLE). This study was performed to compare the influence of mycophenolate mofetil (MMF) and cyclophosphamide (CYC) therapy on these parameters in patients with flaring, organ-threatening disease.MethodsSLE patients currently receiving CYC (n = 20), MMF (n = 25) or no immunosuppressive drugs (n = 22) were compared using a cross-sectional design. Median disease activity and daily corticosteroid dose were similar in these treatment groups. Concurrent medication, organ manifestations, and disease activity were recorded, and cellular and serological parameters were determined by routine diagnostic tests or flow cytometric analysis. In addition follow-up data were obtained from different sets of patients (CYC n = 24; MMF n = 23).ResultsAlthough both drugs showed a significant effect on disease activity and circulating B cell subsets, only MMF reduced circulating plasmablasts and plasma cells as well as circulating free light chains within three months of induction therapy. Neither MMF nor CYC were able to reduce circulating memory B cells. MMF lowered IgA levels more markedly than CYC. We did not observe a significant difference in the reduction of IgG levels or anti-dsDNA antibodies comparing patients receiving MMF or CYC. In contrast to MMF, induction therapy with CYC was associated with a significant increase of circulating CD8+ effector T cells and plasmacytoid dendritic cells (PDCs) after three months.ConclusionsThe results indicate differences between MMF and CYC with regard to the mechanism of action. MMF, but not CYC, treatment leads to a fast and enduring reduction of surrogate markers of B cell activation, such as circulating plasmablasts, plasma cells and free light chains but a comparable rate of hypogammaglobulinemia.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0603-8) contains supplementary material, which is available to authorized users.  相似文献   
17.
Mitochondrial diseases may be caused by numerous mutations that alter proteins of the respiratory chain and of other metabolic pathways in the mitochondrium. For clinicians this disease group poses a considerable diagnostic challenge due to ambiguous genotype-phenotype relationships. Until now, only 30% of the mitochondriopathies can be diagnosed at the molecular level. We therefore need a new diagnostic tool that offers a wide view on the mitochondrial proteins. Here, we present a method to generate a high-resolution, large-gel two-dimensional gel electrophoretic (2-DE) map of a purified fraction of mitochondrial proteins from Epstein-Barr virus-immortalized lymphoblastoid cell line (LCL). LCLs can be easily obtained from patients and control subjects in a routine clinical setting. They often express the biochemical phenotype and can be cultured to high cell numbers, sufficient to gain enough purified material for 2-DE. In total we identified 166 mitochondrial proteins. Thirteen proteins were earlier not known to be of mitochondrial origin. Thirty-nine proteins were associated with human diseases ranging from respiratory chain enzyme deficiencies to disorders of beta-oxidation and amino acid metabolism. This 2-DE map is intended to be the first step to diagnose mitochondrial diseases at the proteomic level.  相似文献   
18.
Since energy storage is a basic metabolic process, the synthesis of neutral lipids occurs in all kingdoms of life. The yeast, Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely steryl esters and triacylglycerols. Triacylglycerols are synthesized through two pathways governed by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p, respectively. Steryl esters are formed by the two steryl ester synthases Are1p and Are2p, two enzymes with overlapping function which also catalyze triacylglycerol formation, although to a minor extent. Storage of neutral lipids is tightly linked to the biogenesis of so called lipid particles. The role of this compartment in lipid homeostasis and its interplay with other organelles involved in neutral lipid dynamics, especially the endoplasmic reticulum and the plasma membrane, are subject of current investigations. In contrast to neutral lipid formation, mobilization of triacylglycerols and steryl esters in yeast are less characterized at the molecular level. Only recently, the triacylglycerol lipase Tgl3p was identified as the first yeast enzyme of this kind by function. Genes and gene products governing steryl ester mobilization still await identification. Besides biochemical properties of enzymes involved in yeast neutral lipid synthesis and degradation, regulatory aspects of these pathways and cell biological consequences of neutral lipid depletion will be discussed in this minireview.  相似文献   
19.
Pyranose 2-oxidase (P2Ox) participates in fungal lignin degradation by producing the H2O2 needed for lignin-degrading peroxidases. The enzyme oxidizes cellulose- and hemicellulose-derived aldopyranoses at C2 preferentially, but also on C3, to the corresponding ketoaldoses. To investigate the structural determinants of catalysis, covalent flavinylation, substrate binding, and regioselectivity, wild-type and mutant P2Ox enzymes were produced and characterized biochemically and structurally. Removal of the histidyl-FAD linkage resulted in a catalytically competent enzyme containing tightly, but noncovalently bound FAD. This mutant (H167A) is characterized by a 5-fold lower kcat, and a 35-mV lower redox potential, although no significant structural changes were seen in its crystal structure. In previous structures of P2Ox, the substrate loop (residues 452-457) covering the active site has been either disordered or in a conformation incompatible with carbohydrate binding. We present here the crystal structure of H167A in complex with a slow substrate, 2-fluoro-2-deoxy-D-glucose. Based on the details of 2-fluoro-2-deoxy-D-glucose binding in position for oxidation at C3, we also outline a probable binding mode for D-glucose positioned for regioselective oxidation at C2. The tentative determinant for discriminating between the two binding modes is the position of the O6 hydroxyl group, which in the C2-oxidation mode can make favorable interactions with Asp452 in the substrate loop and, possibly, a nearby arginine residue (Arg472). We also substantiate our hypothesis with steady-state kinetics data for the alanine replacements of Asp452 and Arg472 as well as the double alanine 452/472 mutant.  相似文献   
20.
Die Entwicklung der Kapazität für Photophosphorylierung in den epi-gäischen Kotyledonen des Senfkeimlings wird durch Phytochrom (Pfr) reguliert. Wird der Pfr-Gehalt sehr niedrig gehalten, bildet sich keine Kapazität für Photophosphorylierung aus, auch wenn sich die Bildung von Chlorophyll normal vollzieht. Phytochrom (Pfr) kann die Kapazität für Photophosphorylierung nur dann ?induzieren”, wenn die Kotyledonen mit dem oberen Teil des Hypokotyls (Haken) verbunden sind. Hingegen ist die Chlorophyllbildung der Kotyledonen mit und ohne Haken gleich. Während sich der Effekt des Pfr auf die Kapazität für Photophosphorylierung relativ schnell (innerhalb von 15 min) ausprägt, ist der Effekt des Pfr auf die Chlorophyllbildung langsam. Er manifestiert sich erst etwa 2 h nach Lichtbeginn. Es wird der Schluß gezogen, daß die multiple Kontrolle von Piastidenfunktionen durch Phytochrom (Pfr) auf verschiedene, voneinander unabhängige Primärwirkungen des Phytochroms zurückzuführen ist. Mit Unterstützung der Deutschen Forschungsgemeinschaft (SFB 46). Wir danken Dr. E. Schäfer für die Bestimmung der Photogleichgewichte des Phytochromsystems bei Dichromatbestrahlung und Frau I. Schneider für gewissenhafte technische Mitarbeit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号