首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6845篇
  免费   667篇
  国内免费   2篇
  2021年   155篇
  2020年   89篇
  2019年   109篇
  2018年   101篇
  2017年   95篇
  2016年   187篇
  2015年   295篇
  2014年   324篇
  2013年   380篇
  2012年   541篇
  2011年   530篇
  2010年   315篇
  2009年   245篇
  2008年   421篇
  2007年   428篇
  2006年   346篇
  2005年   391篇
  2004年   356篇
  2003年   293篇
  2002年   287篇
  2001年   98篇
  2000年   107篇
  1999年   104篇
  1998年   78篇
  1997年   49篇
  1996年   53篇
  1995年   46篇
  1994年   42篇
  1993年   32篇
  1992年   49篇
  1991年   45篇
  1990年   46篇
  1989年   31篇
  1988年   35篇
  1987年   33篇
  1986年   45篇
  1985年   49篇
  1984年   35篇
  1983年   34篇
  1982年   36篇
  1980年   29篇
  1979年   41篇
  1978年   37篇
  1976年   28篇
  1975年   23篇
  1974年   32篇
  1973年   26篇
  1972年   25篇
  1967年   23篇
  1966年   29篇
排序方式: 共有7514条查询结果,搜索用时 125 毫秒
971.
Snowdrop (Galanthus nivalis) lectin has previously been shown to have anti-feedant and insecticidal activity towards sap-sucking insects. However, its effectiveness against plant-parasitic mites has not been demonstrated. In this study, the commercial papaya (Carica papaya L.) cultivar Kapoho, which is highly susceptible to mites, was transformed with the snowdrop lectin (G. nivalis agglutin [GNA]) gene. Polymerase chain reaction confirmed the presence of the transgene and six independent transformed lines were selected for expression analysis. Western blot analysis showed that the lines expressed a recombinant protein with a molecular weight similar to that of the native snowdrop lectin. Leaf extracts containing the recombinant GNA protein agglutinated trypsinized rabbit erythrocytes thus, showing the GNA protein to be biologically active. ELISA and indirect measurement from the agglutination assay showed there to be variation in GNA expression among the lines produced. A laboratory bioassay using carmine spider mites (Tetranychus cinnabarinus) suggested improved pest resistance in the transgenic papaya plants. This is the first report that a transgenic plant expressing the GNA gene possesses enhanced resistance to a plant-parasitic mite.  相似文献   
972.
Fibroblast growth factors (FGFs) are required for brain, pharyngeal arch, suture and neural crest cell development and mutations in the FGF receptors have been linked to human craniofacial malformations. To study the functions of FGF during facial morphogenesis we locally perturb FGF signalling in the avian facial prominences with FGFR antagonists, foil barriers and FGF2 protein. We tested 4 positions with antagonist-soaked beads but only one of these induced a facial defect. Embryos treated in the lateral frontonasal mass, adjacent to the nasal slit developed cleft beaks. The main mechanisms were a block in proliferation and an increase in apoptosis in those areas that were most dependent on FGF signaling. We inserted foil barriers with the goal of blocking diffusion of FGF ligands out of the lateral edge of the frontonasal mass. The barriers induced an upregulation of the FGF target gene, SPRY2 compared to the control side. Moreover, these changes in expression were associated with deletions of the lateral edge of the premaxillary bone. To determine whether we could replicate the effects of the foil by increasing FGF levels, beads soaked in FGF2 were placed into the lateral edge of the frontonasal mass. There was a significant increase in proliferation and an expansion of the frontonasal mass but the skeletal defects were minor and not the same as those produced by the foil. Instead it is more likely that the foil repressed FGF signaling perhaps mediated by the increase in SPRY2 expression. In summary, we have found that the nasal slit is a source of FGF signals and the function of FGF is to stimulate proliferation in the cranial frontonasal mass. The FGF independent regions correlate with those previously determined to be dependent on BMP signaling. We propose a new model whereby, FGF-dependent microenvironments exist in the cranial frontonasal mass and caudal maxillary prominence and these flank BMP-dependent regions. Coordination of the proliferation in these regions leads ultimately to normal facial morphogenesis.  相似文献   
973.
The Par3/Par6/aPKC protein complex plays a key role in the establishment and maintenance of apicobasal polarity, a cellular characteristic essential for tissue and organ morphogenesis, differentiation and homeostasis. During a forward genetic screen for liver and pancreas mutants, we identified a pard6γb mutant, representing the first known pard6 mutant in a vertebrate organism. pard6γb mutants exhibit defects in epithelial tissue development as well as multiple lumens in the neural tube. Analyses of the cells lining the neural tube cavity, or neurocoel, in wildtype and pard6γb mutant embryos show that lack of Pard6γb function leads to defects in mitotic spindle orientation during neurulation. We also found that the PB1 (aPKC-binding) and CRIB (Cdc-42-binding) domains and the KPLG amino acid sequence within the PDZ domain (Pals1-and Crumbs binding) are not required for Pard6γb localization but are essential for its function in neurocoel morphogenesis. Apical membranes are reduced, but not completely absent, in mutants lacking the zygotic, or both the maternal and zygotic, function of pard6γb, leading us to examine the localization and function of the three additional zebrafish Pard6 proteins. We found that Pard6α, but not Pard6β or Pard6γa, could partially rescue the pard6γbs441 mutant phenotypes. Altogether, these data indicate a previously unappreciated functional diversity and complexity within the vertebrate pard6 gene family.  相似文献   
974.
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1(-/-) islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-beta-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1(-/-) and glyburide-treated SUR1(+/+) islets. Glucose oxidation and pyruvate cycling was increased in SUR1(-/-) islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1, 2, and 3, involved in pyruvate cycling, were all expressed in islets. High glucose lowered aspartate and stimulated glutamine synthesis similarly in controls and SUR1(-/-) islets. The data suggest that the interruption of the GABA shunt and the lack of glucose regulation of pyruvate cycling may cause the glucose insensitivity of the SUR1(-/-) islets but that enhanced basal pyruvate cycling, lowered GABA shunt flux, and enhanced glutaminolytic capacity may sensitize the beta cells to amino acid stimulation.  相似文献   
975.
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanella oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.  相似文献   
976.
Information on the spatial distribution of past vegetation on local, regional and global scales is increasingly used within climate modelling, nature conservancy and archaeology. It is possible to obtain such information from fossil pollen records in lakes and bogs using the landscape reconstruction algorithm (LRA) and its two models, REVEALS and LOVE. These models assume that reliable pollen productivity estimates (PPEs) are available for the plant taxa involved in the quantitative reconstructions of past vegetation, and that PPEs are constant through time. This paper presents and discusses the PPEs for 15 tree and 18 herb taxa obtained in nine study areas of Europe. Observed differences in PPEs between regions may be explained by methodological issues and environmental variables, of which climate and related factors such as reproduction strategies and growth forms appear to be the most important. An evaluation of the PPEs at hand so far suggests that they can be used in modelling applications and quantitative reconstructions of past vegetation, provided that consideration of past environmental variability within the region is used to inform selection of PPEs, and bearing in mind that PPEs might have changed through time as a response to climate change. Application of a range of possible PPEs will allow a better evaluation of the results.  相似文献   
977.
Augé RM  Toler HD  Sams CE  Nasim G 《Mycorrhiza》2008,18(3):115-121
Stomatal conductance (g s) and transpiration rates vary widely across plant species. Leaf hydraulic conductance (k leaf) tends to change with g s, to maintain hydraulic homeostasis and prevent wide and potentially harmful fluctuations in transpiration-induced water potential gradients across the leaf (ΔΨ leaf). Because arbuscular mycorrhizal (AM) symbiosis often increases g s in the plant host, we tested whether the symbiosis affects leaf hydraulic homeostasis. Specifically, we tested whether k leaf changes with g s to maintain ΔΨ leaf or whether ΔΨ leaf differs when g s differs in AM and non-AM plants. Colonization of squash plants with Glomus intraradices resulted in increased g s relative to non-AM controls, by an average of 27% under amply watered, unstressed conditions. Stomatal conductance was similar in AM and non-AM plants with exposure to NaCl stress. Across all AM and NaCl treatments, k leaf did change in synchrony with g s (positive correlation of g s and k leaf), corroborating leaf tendency toward hydraulic homeostasis under varying rates of transpirational water loss. However, k leaf did not increase in AM plants to compensate for the higher g s of unstressed AM plants relative to non-AM plants. Consequently, ΔΨ leaf did tend to be higher in AM leaves. A trend toward slightly higher ΔΨ leaf has been observed recently in more highly evolved plant taxa having higher productivity. Higher ΔΨ leaf in leaves of mycorrhizal plants would therefore be consistent with the higher rates of gas exchange that often accompany mycorrhizal symbiosis and that are presumed to be necessary to supply the carbon needs of the fungal symbiont.  相似文献   
978.
Goal, Scope, and Background  The paper describes the integration of the economic input–output life cycle assessment (EIO-LCA) model and the environmental fate and transport model (CHEMGL) with a risk assessment tool. Utilizing the EIO-LCA, instead of a traditional LCA, enables a rapid, screening-level analysis of an emerging chemical of concern, decabromodiphenyl ether (DecaBDE). The risk assessment in this study is evaluated based on the mass of chemical released, estimated concentrations, exposure, and chemical toxicity. Methods  The relative risk from ten economic sectors identified within the EIO-LCA model, 55 chemicals utilized in those sectors and DecaBDE along with four potential DecaBDE breakdown products, were evaluated for the life cycle stages and exposure pathways. The relative risk (expressed as toluene equivalents) of the different chemicals, sectors, and life cycle stages were compared to assess those representing the greatest overall relative risks to humans (via inhalation and ingestion) and fish. Results  The greatest overall risk to human health resulted from the manufacturing and production stages. For fish, the manufacturing stage represented virtually all of the risk. Of the 56 chemicals evaluated, DecaBDE represented the majority of the total risk to humans. However, DecaBDE posed the least risk compared to its potential breakdown products. Discussion  The risk to humans from ingestion, which represented the greatest risk, from the production, manufacturing, and consumption stages can be controlled and reduced through various safety precautions in the workplace. Additionally, the increasing concentration of DecaBDE in anaerobic compartments represents a threat to humans and fish via the higher risk DecaBDE breakdown products. Conclusions  Overall, the manufacturing and production life cycle stages pose the greatest risk to humans and fish. The sediment compartment received the highest DecaBDE concentration for the production, manufacturing, and consumption stages. This case study demonstrates that the integrated EIO-LCA with risk assessment is suitable for screening-level analysis of emerging chemicals due to rapid life cycle inventory analysis. Recommendations  The production and manufacturing stages allow for greater industry control and government regulation, compared to the consumption stage, because there are fewer point sources. This integrated life cycle methodology may allow chemical designers to evaluate each stage and assess areas where risks can be minimized.  相似文献   
979.
Matrix metalloproteinases (MMPs) are a large conserved family of extracellular proteases, a number of which are expressed during neuronal development and upregulated in nervous system diseases. Primarily on the basis of studies using pharmaceutical inhibitors, MMPs have been proposed to degrade the extracellular matrix to allow growth cone advance during development and hence play largely permissive roles in axon extension. Here we show that MMPs are not required for axon extension in the Drosophila embryo, but rather are specifically required for the execution of several stereotyped motor axon pathfinding decisions. The Drosophila genome contains only two MMP homologs, Mmp1 and Mmp2. We isolated Mmp1 in a misexpression screen to identify molecules required for motoneuron development. Misexpression of either MMP inhibits the regulated separation/defasciculation of motor axons at defined choice points. Conversely, motor nerves in Mmp1 and Mmp2 single mutants and Mmp1 Mmp2 double mutant embryos are loosely bundled/fasciculated, with ectopic axonal projections. Quantification of these phenotypes reveals that the genetic requirement for Mmp1 and Mmp2 is distinct in different nerve branches, although generally Mmp2 plays the predominant role in pathfinding. Using both an endogenous MMP inhibitor and MMP dominant-negative constructs, we demonstrate that MMP catalytic activity is required for motor axon fasciculation. In support of the model that MMPs promote fasciculation, we find that the defasciculation observed when MMP activity is compromised is suppressed by otherwise elevating interaxonal adhesion -- either by overexpressing Fas2 or by reducing Sema-1a dosage. These data demonstrate that MMP activity is essential for embryonic motor axon fasciculation.  相似文献   
980.
In this study, we determined the function of a novel non-ribosomal peptide synthetase (NRPS) system carried by a streptococcal integrative conjugative element (ICE), ICESe2. The NRPS shares similarity with the yersiniabactin system found in the high-pathogenicity island of Yersinia sp. and is the first of its kind to be identified in streptococci. We named the NRPS product 'equibactin' and genes of this locus eqbA-N. ICESe2, although absolutely conserved in Streptococcus equi, the causative agent of equine strangles, was absent from all strains of the closely related opportunistic pathogen Streptococcus zooepidemicus. Binding of EqbA, a DtxR-like regulator, to the eqbB promoter was increased in the presence of cations. Deletion of eqbA resulted in a small-colony phenotype. Further deletion of the irp2 homologue eqbE, or the genes eqbH, eqbI and eqbJ encoding a putative ABC transporter, or addition of the iron chelator nitrilotriacetate, reversed this phenotype, implicating iron toxicity. Quantification of (55)Fe accumulation and sensitivity to streptonigrin suggested that equibactin is secreted by S. equi and that the eqbH, eqbI and eqbJ genes are required for its associated iron import. In agreement with a structure-based model of equibactin synthesis, supplementation of chemically defined media with salicylate was required for equibactin production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号