首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1704篇
  免费   203篇
  2021年   15篇
  2020年   18篇
  2019年   16篇
  2017年   23篇
  2016年   34篇
  2015年   41篇
  2014年   41篇
  2013年   55篇
  2012年   73篇
  2011年   71篇
  2010年   42篇
  2009年   52篇
  2008年   75篇
  2007年   77篇
  2006年   76篇
  2005年   57篇
  2004年   81篇
  2003年   56篇
  2002年   57篇
  2001年   49篇
  2000年   47篇
  1999年   49篇
  1998年   31篇
  1997年   31篇
  1996年   28篇
  1995年   25篇
  1994年   20篇
  1993年   29篇
  1992年   41篇
  1991年   23篇
  1990年   23篇
  1989年   28篇
  1988年   24篇
  1987年   25篇
  1986年   28篇
  1985年   21篇
  1984年   34篇
  1982年   15篇
  1981年   16篇
  1980年   20篇
  1979年   22篇
  1977年   18篇
  1976年   15篇
  1975年   25篇
  1974年   14篇
  1973年   22篇
  1972年   19篇
  1971年   19篇
  1970年   19篇
  1969年   16篇
排序方式: 共有1907条查询结果,搜索用时 156 毫秒
991.
The arsenite-stimulated human ATPase (hASNA-I) protein is a distinct human ATPase whose cDNA was cloned by sequence homology to the Escherichia coli ATPase arsA. Its subcellular localization in human malignant melanoma T289 cells was examined to gain insight into the role of hASNA-I in the physiology of human cells. Immunocytochemical staining using the specific anti-hASNA-I monoclonal antibody 5G8 showed a cytoplasmic, perinuclear, and nucleolar distribution. Subcellular fractionation indicated that the cytoplasmic hASNA-I was soluble and that the perinuclear distribution was due to association with the nuclear membrane rather than with the endoplasmic reticulum. Its presence in the nucleolus was confirmed by showing colocalization with an antibody of known nucleolar specificity. Further immunocytochemical analysis showed that the hASNA-I at the nuclear membrane was associated with invaginations into the nucleus in interphase cells. These results indicate that hASNA-I is a paralogue of the bacterial ArsA protein and suggest that it plays a role in the nucleocytoplasmic transport of a nucleolar component. J. Cell. Biochem. 71:1–10, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
992.
Nitrogen-containing bisphosphonates are potent bone antiresorptive agents as well as having herbicidal and antiparasitic activity, and are thought to act by inhibiting enzymes of the mevalonate pathway. Using molecular modeling and ab initio quantum chemical calculations, we show that bisphosphonates can act as aza-isoprenoid transition state analogs, thereby inhibiting isoprenoid biosynthesis. The two phosphonate groups of the 1,1-bisphosphonates readily dock into the diphosphate-Mg(2+) binding site in farnesyl diphosphate synthase, while the charged ammonium (or pyridinium or imidazolium) groups act as carbocation transition state analogs, whose binding is stabilized by a cluster of oxygen atoms in the active site cleft, and an overall negative electrostatic potential in this region. Enhanced activity is shown to correlate with increasing van der Waals stabilization due to N-alkylation, or the presence of a charged, planar (sp(2)-hybridized) aromatic residue in the carbocation binding site. These results are of general interest since they suggest a rational approach to bisphosphonate drug design.  相似文献   
993.
Hepatocyte growth factor (HGF) is a heparin-binding, multipotent growth factor that transduces a wide range of biological signals, including mitogenesis, motogenesis, and morphogenesis. Heparin or closely related heparan sulfate has profound effects on HGF signaling. A heparin-binding site in the N-terminal (N) domain of HGF was proposed on the basis of the clustering of surface positive charges [Zhou, H., Mazzulla, M. J., Kaufman, J. D., Stahl, S. J., Wingfield, P. T., Rubin, J. S., Bottaro, D. P., and Byrd, R. A. (1998) Structure 6, 109-116]. In the present study, we confirmed this binding site in a heparin titration experiment monitored by nuclear magnetic resonance spectroscopy, and we estimated the apparent dissociation constant (K(d)) of the heparin-protein complex by NMR and fluorescence techniques. The primary heparin-binding site is composed of Lys60, Lys62, and Arg73, with additional contributions from the adjacent Arg76, Lys78, and N-terminal basic residues. The K(d) of binding is in the micromolar range. A heparin disaccharide analogue, sucrose octasulfate, binds with similar affinity to the N domain and to a naturally occurring HGF isoform, NK1, at nearly the same region as in heparin binding. (15)N relaxation data indicate structural flexibility on a microsecond-to-millisecond time scale around the primary binding site in the N domain. This flexibility appears to be dramatically reduced by ligand binding. On the basis of the NK1 crystal structure, we propose a model in which heparin binds to the two primary binding sites and the N-terminal regions of the N domains and stabilizes an NK1 dimer.  相似文献   
994.
The objective of this study was to validate two indirect methods for estimating the extent of menstrual blood loss against a reference method to determine which method would be most appropriate for use in a population of young adult women. Thirty-two women aged 18 to 29 years (mean +/- SD; 22.4 +/- 2.8) were recruited by poster in Dunedin (New Zealand). Data are presented for 29 women. A recall method and a record method for estimating extent of menstrual loss were validated against a weighed reference method. Spearman rank correlation coefficients between blood loss assessed by Weighed Menstrual Loss and Menstrual Record was rs = 0.47 (p = 0.012), and between Weighed Menstrual Loss and Menstrual Recall, was rs = 0.61 (p = 0.001). The Record method correctly classified 66% of participants into the same tertile, grossly misclassifying 14%. The Recall method correctly classified 59% of participants, grossly misclassifying 7%. Reference method menstrual loss calculated for surrogate categories demonstrated a significant difference between the second and third tertiles for the Record method, and between the first and third tertiles for the Recall method. The Menstrual Recall method can differentiate between low and high levels of menstrual blood loss in young adult women, is quick to complete and analyse, and has a low participant burden.  相似文献   
995.
Many virus infections give rise to surprisingly limited T-cell responses directed to very few immunodominant determinants. We have been examining the cytotoxic T-lymphocyte (CTL) response to herpes simplex virus type 1 (HSV-1) infection. Previous studies have identified the glycoprotein B-derived peptide from residues 498 to 505 (gB(498-505)) as one of at least three determinants recognized by HSV-1-specific CTLs isolated from C57BL/6 mice. We had previously found that in vitro-derived CTLs directed to gB(498-505) show a characteristic pattern of T-cell receptor (TCR) usage, with 60% of gB(498-505)-specific CD8(+) T cells expressing BV10(+) TCR beta chains and a further 20% expressing BV8S1. In this report, we confirm that this TCR V-region bias is also reflected in the ex vivo response to HSV-1 infection. A high proportion of activated CD8(+) draining lymph node cells were found to express these dominant V regions, suggesting that a substantial number of in vivo responding T cells were directed to this one viral determinant. The use of an HSV-1 deletion mutant lacking the gB(498-505) determinant in combination with accurate intracellular gamma interferon staining allowed us to quantify the extent of gB-specific T-cell dominance. Together, these results suggested that between 70 and 90% of all CD8(+) HSV-1-specific T cells target gB(498-505). While deletion of this determinant resulted in an attenuated CD8(+) T-cell response, it also permitted the emergence of one or more previously unidentified cryptic specificities. Overall, HSV-1 infection of C57BL/6 mice results in an extremely focused pattern of CD8(+) T-cell selection in terms of target specificity and TCR expression.  相似文献   
996.
Hormonally regulated programmed cell death in barley aleurone cells   总被引:13,自引:0,他引:13  
PC Bethke  JE Lonsdale  A Fath    RL Jones 《The Plant cell》1999,11(6):1033-1046
Cell death was studied in barley (cv Himalaya) aleurone cells treated with abscisic acid and gibberellin. Aleurone protoplasts incubated in abscisic acid remained viable in culture for at least 3 weeks, but exposure to gibberellin initiated a series of events that resulted in death. Between 4 and 8 days after incubation in gibberellin, >70% of all protoplasts died. Death, which occurred after cells became highly vacuolated, was manifest by an abrupt loss of plasma membrane integrity followed by rapid shrinkage of the cell corpse. Hydrolysis of DNA began before death and occurred as protoplasts ceased production of alpha-amylase. DNA degradation did not result in the accumulation of discrete low molecular weight fragments. DNA degradation and cell death were prevented by LY83583, an inhibitor of gibberellin signaling in barley aleurone. We conclude that cell death in aleurone cells is hormonally regulated and is the final step of a developmental program that promotes successful seedling establishment.  相似文献   
997.
Seminoma is a subclass of human testicular germ cell tumors (TGCT), the most frequently observed cancer in young men with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing protein 50 (lrrc50 also called dnaaf1), associated previously with ciliary function, are found to be highly susceptible to the formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH) of the wild-type lrrc50 allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort). Together, our study introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human seminoma pathogenesis.  相似文献   
998.
Epstein-Barr virus (EBV), a lymphomagenic human herpesvirus, colonises the host through polyclonal B cell-growth-transforming infections yet establishes persistence only in IgD+ CD27+ non-switched memory (NSM) and IgD CD27+ switched memory (SM) B cells, not in IgD+ CD27 naïve (N) cells. How this selectivity is achieved remains poorly understood. Here we show that purified N, NSM and SM cell preparations are equally transformable in vitro to lymphoblastoid cells lines (LCLs) that, despite upregulating the activation-induced cytidine deaminase (AID) enzyme necessary for Ig isotype switching and Ig gene hypermutation, still retain the surface Ig phenotype of their parental cells. However, both N- and NSM-derived lines remain inducible to Ig isotype switching by surrogate T cell signals. More importantly, IgH gene analysis of N cell infections revealed two features quite distinct from parallel mitogen-activated cultures. Firstly, following 4 weeks of EBV-driven polyclonal proliferation, individual clonotypes then become increasingly dominant; secondly, in around 35% cases these clonotypes carry Ig gene mutations which both resemble AID products and, when analysed in prospectively-harvested cultures, appear to have arisen by sequence diversification in vitro. Thus EBV infection per se can drive at least some naïve B cells to acquire Ig memory genotypes; furthermore, such cells are often favoured during an LCL''s evolution to monoclonality. Extrapolating to viral infections in vivo, these findings could help to explain how EBV-infected cells become restricted to memory B cell subsets and why EBV-driven lymphoproliferative lesions, in primary infection and/or immunocompromised settings, so frequently involve clones with memory genotypes.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号