首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   14篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1949年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
51.
A historical impact assessment was conducted for chemical contaminants in sediments of the tidal Passaic River in northern New Jersey. The assessment was based on sediment cores collected from 1990 to 1995. Each sediment core was segregated into fractions and the fractions dated using radioisotope analysis. Chemical concentrations, including a variety of metals and organic compounds, were estimated by decade for most of the 20th century in five reaches of the River. The chemical data for each decade were compared to available benchmark sediment quality values that represent levels of chemicals that may be toxic to benthic invertebrates in estuarine systems. Benchmark exceedances in the River were then calculated and characterized spatially and temporally using quantitative Geographic Information System (GIS) analyses, and the area of “impacted” sediments was calculated for each chemical and decade. Results of this assessment suggest that the ability of Passaic River sediments to support “normal” benthic invertebrate populations was limited by sediment contaminants throughout the 20th century. Conditions have improved somewhat since the 1950s, although impacts to benthic populations remain from several metals and organic compounds despite some overall improvements in sediment quality in recent years.  相似文献   
52.
53.
54.
The kinetochore is a large, macromolecular assembly that is essential for connecting chromosomes to microtubules during mitosis. Despite the recent identification of multiple kinetochore components, the nature and organization of the higher-order kinetochore structure remain unknown. The outer kinetochore KNL-1/Mis12 complex/Ndc80 complex (KMN) network plays a key role in generating and sensing microtubule attachments. Here we demonstrate that Caenorhabditis elegans KNL-1 exists as an oligomer, and we identify a specific domain in KNL-1 responsible for this activity. An N-terminal KNL-1 domain from both C. elegans and the related nematode Caenorhabditis remanei oligomerizes into a decameric assembly that appears roughly circular when visualized by electron microscopy. On the basis of sequence and mutational analysis, we identify a small hydrophobic region as responsible for this oligomerization activity. However, mutants that precisely disrupt KNL-1 oligomerization did not alter KNL-1 localization or result in the loss of embryonic viability based on gene replacements in C. elegans. In C. elegans, KNL-1 oligomerization may coordinate with other kinetochore activities to ensure the proper organization, function, and sensory capabilities of the kinetochore–microtubule attachment.  相似文献   
55.
Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell K(ATP) channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the K(ATP) channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present.  相似文献   
56.
Inwardly rectifying potassium (Kir) channels control cell membrane K+ fluxes and electrical signalling in diverse cell types. Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive (K(ATP)) channel, cause permanent neonatal diabetes mellitus. However, the I296L mutation also results in developmental delay, muscle weakness and epilepsy. We investigated the functional effects of the I296L mutation by expressing wild-type or mutant Kir6.2/SUR1 channels in Xenopus oocytes. The mutation caused a marked increase in resting whole-cell K(ATP) currents by reducing channel inhibition by ATP, in both homomeric and simulated heterozygous states. Kinetic analysis showed that the mutation impaired ATP sensitivity indirectly, by stabilizing the open state of the channel and possibly also by means of an allosteric effect on ATP binding and/or transduction. The results implicate a new region in Kir-channel gating and suggest that disease severity is correlated with the extent of reduction in ATP sensitivity.  相似文献   
57.
Colony stimulating factors (CSFs) regulate the survival, proliferation and differentiation of haemopoietic progenitor cells, as well as the functional activity of mature cells. Because the osteoclast is derived from haemopoietic tissue, and because osteoblastic cells produce CSFs, we tested the effects of several CSFs on bone resorption by osteoclasts disaggregated from neonatal rat long bone. We found that recombinant macrophage (M)-CSF was a potent inhibitor of bone resorption, causing significant inhibition at concentrations similar to those required to support the growth of macrophage colonies in agar. Unlike other inhibitors of osteoclastic resorption, M-CSF did not alter cytoplasmic motility in time-lapse recordings, suggesting that M-CSF may inhibit osteoclasts through a different transduction mechanism. None of the remaining cytokines tested (granulocyte-macrophage CSF, interleukin 3, interleukin 6, or interferon γ) influenced bone resorption. M-CSF production may be a mechanism by which osteoblastic cells, which produce M-CSF, may regulate osteoclastic function. Alternatively, inhibition of osteoclastic resorption by a CSF that is responsible for amplification of the macrophage compartment may reflect a close lineage relationship between mononuclear phagocytes, in which M-CSF induces a diversion of lineage resources away from osteoclastic function.  相似文献   
58.
The effects of granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), and interleukin 3 (IL3) on osteoclast formation were tested by incubation of murine hemopoietic cells on plastic coverslips and bone slices with GM-CSF, M-CSF, or IL3, with or without 1,25(OH)2 vitamin D3 (1,25(OH)2D3). Osteoclastic differentiation was detected after incubation by scanning electron microscopical examination of bone slices for evidence of osteoclastic excavations, and by autoradiographic assessment of cells for 1,25(OH)2D3-calcitonin (CT) binding. The differentiation of CT-receptor-positive cells preceded bone resorption, but the number that developed correlated with the extent of bone resorption (r = 0.88). M-CSF and GM-CSF substantially reduced bone resorption and CT-receptor-positive cell formation. The degree of inhibition of bone resorption could not be attributed to effects on the function of mature cells, since M-CSF inhibits resorption by such cells only by 50%, and GM-CSF has no effect. GM-CSF inhibited the development of mature function (bone resorption) to a greater extent than it inhibited CT-receptor-positive cell formation. Since CT-receptor expression antedated resorptive function, this suggests that GM-CSF resulted in the formation of reduced numbers of relatively immature osteoclasts. This suggests that it may exert a restraining effect on the maturation of cells undergoing osteoclastic differentiation in response to 1,25(OH)2D3. Conversely, IL3, which also has no effect on mature osteoclasts, by itself induced CT-receptor expression but not bone resorption; in combination with 1,25(OH)2D3 it induced a threefold increase in bone resorption and CT-receptor-positive cells compared with cultures incubated with 1,25(OH)2D3 alone. IL3 did not induce CT-receptors in peritoneal macrophages, blood monocytes, or J 774 cells. The results suggest that IL3 induces only partial maturation of osteoclasts, which is augmented or completed by additional factors such as 1,25(OH)2D3.  相似文献   
59.
We have shown previously that surfactant protein D (SP-D) binds and agglutinates Streptococcus pneumoniae in vitro. In this study, the role of SP-D in innate immunity against S. pneumoniae was investigated in vivo, by comparing the outcome of intranasal infection in surfactant protein D deficient (SP-D-/-) to wildtype mice (SP-D+/+). Deficiency of SP-D was associated with enhanced colonisation and infection of the upper and lower respiratory tract and earlier onset and longer persistence of bacteraemia. Recruitment of neutrophils to inflammatory sites in the lung was similar in both strains mice in the first 24 hrs post-infection, but different by 48 hrs. T cell influx was greatly enhanced in SP-D-/- mice as compared to SP-D+/+ mice. Our data provides evidence that SP-D has a significant role to play in the clearance of pneumococci during the early stages of infection in both pulmonary sites and blood.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号