首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   3篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   8篇
  1978年   4篇
  1977年   8篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
  1971年   5篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
61.
The values of the rotational correlation times of the native valyl-tRNA synthetase and the proteolytic modified enzyme are very close to those of the large fragment of molecular weight 70,000 that has a correlation time of 70 nsec, whereas the small proteolytic fragment has a correlation time of 15 nsec. This indicates that there is rotational freedom within the native valyl-tRNA synthetase corresponding to the biochemically active fragment of molecular weight 70,000. The structural model drawn from these results reveals that the valyl-tRNA synthetase is composed of two unequal, quasi-spherical parts covalently linked by a small peptide bridge. Mild tryptic hydrolysis breaks the covalent bridge between these quasi-spherical domains without changing the overall structure of the valyl-tRNA synthetase significantly.  相似文献   
62.
Reactive oxygen species (ROS) are considered a key factor in brain aging process. Mitochondrial respiration is an important site of ROS production and hence a potential contributor to brain functional changes with aging. In this study we examined the effect of aging on complex I activity, oxygen consumption, ROS production and phospholipid composition in rat brain mitochondria. The activity of complex I was reduced by 30% in brain mitochondria from 24 months aged rats relative to young animals. These changes in complex I activity were associated with parallel changes in state 3 respiration. H(2)O(2) generation was significantly increased in mitochondria isolated from aged rats. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, decreased by 31% as function of aging, while there was a significant increase in the level of peroxidized cardiolipin. The age-related decrease in complex I activity in brain mitochondria could be reversed by exogenously added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids. It is proposed that aging causes brain mitochondrial complex I dysfunction which can be attributed to ROS-induced cardiolipin oxidation. These findings may prove useful in elucidating the mechanism underlying mitochondrial dysfunction associated with brain aging.  相似文献   
63.
The aim of this study was to investigate the influence of reactive oxygen species (ROS) on the activity of complex I and on the cardiolipin content in bovine heart submitochondrial particles (SMP). ROS were generated through the use of xanthine/xanthine oxidase (X/XO) system. Treatment of SMP with X/XO resulted in a large production of superoxide anion, detected by acetylated cytochrome c method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to ROS generation resulted in a marked loss of complex I activity and to parallel loss of mitochondrial cardiolipin content. Both these effects were completely abolished by SOD+catalase. Exogenous added cardiolipin was able to almost completely restore the ROS-induced loss of complex I activity. No restoration was obtained with other major phospholipid components of the mitochondrial membrane such as phosphatidylcholine and phosphatidylethanolamine, nor with peroxidized cardiolipin. These results demonstrate that ROS affect the mitochondrial complex I activity via oxidative damage of cardiolipin which is required for the functioning of this multisubunit enzyme complex. These results may prove useful in probing molecular mechanisms of ROS-induced peroxidative damage to mitochondria, which have been proposed to contribute to those pathophysiological conditions characterized by an increase in the basal production of reactive oxygen species such as aging, ischemia/reperfusion and chronic degenerative diseases.  相似文献   
64.
The association among anthropogenic environmental disturbance, pathogen pollution and the emergence of infectious diseases in wildlife has been postulated, but not always well supported by epidemiologic data. Specific evidence of coastal contamination of the marine ecosystem with the zoonotic protozoan parasite, Toxoplasma gondii, and extensive infection of southern sea otters (Enhydra lutris nereis) along the California coast was documented by this study. To investigate the extent of exposure and factors contributing to the apparent emergence of T. gondii in southern sea otters, we compiled environmental, demographic and serological data from 223 live and dead sea otters examined between 1997 and 2001. The T. gondii seroprevalence was 42% (49/116) for live otters, and 62% (66/107) for dead otters. Demographic and environmental data were examined for associations with T. gondii seropositivity, with the ultimate goal of identifying spatial clusters and demographic and environmental risk factors for T. gondii infection. Spatial analysis revealed clusters of T. gondii-seropositive sea otters at two locations along the coast, and one site with lower than expected T. gondii seroprevalence. Risk factors that were positively associated with T. gondii seropositivity in logistic regression analysis included male gender, older age and otters sampled from the Morro Bay region of California. Most importantly, otters sampled near areas of maximal freshwater runoff were approximately three times more likely to be seropositive to T. gondii than otters sampled in areas of low flow. No association was found between seropositivity to T. gondii and human population density or exposure to sewage. This study provides evidence implicating land-based surface runoff as a source of T. gondii infection for marine mammals, specifically sea otters, and provides a convincing illustration of pathogen pollution in the marine ecosystem.  相似文献   
65.
The effect of reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, on the activity of cytochrome c oxidase and on the cardiolipin content in bovine heart submitochondrial particles (SMP) was studied. ROS were produced by treatment of succinate-respiring SMP with antimycin A. This treatment resulted in a large production of superoxide anion, measured by epinephrine method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to mitochondrial mediated ROS generation, led to a marked loss of cytochrome c oxidase activity and to a parallel loss of cardiolipin content. Both these effects were completely abolished by SOD+catalase. Added cardiolipin was able to almost completely restore the ROS-induced loss of cytochrome c oxidase activity. No restoration was obtained with peroxidized cardiolipin. These results demonstrate that mitochondrial mediated ROS generation affects the activity of cytochrome c oxidase via peroxidation of cardiolipin which is needed for the optimal functioning of this enzyme complex. These results may prove useful in probing molecular mechanism of ROS-induced peroxidative damage to mitochondria which have been proposed to contribute to aging, ischemia/reperfusion and chronic degenerative diseases.  相似文献   
66.
Release of cytochrome c from mitochondria is considered a critical, early event in the induction of an apoptosis cascade that ultimately leads to programmed cell death. Mitochondrial Ca(2+) loading is a trigger for the release of cytochrome c, although the molecular mechanism underlying this effect is not fully clarified. This study tested the hypothesis that distinct Ca(2+) thresholds may induce cytochrome c release from rat liver mitochondria by membrane permeability transition (MPT)-dependent and independent mechanisms. The involvement of reactive oxygen species (ROS) and cardiolipin in the Ca(2+)-induced cytochrome c release was also investigated. Cytochrome c was quantitated by a new, very sensitive, and rapid reverse-phase high performance liquid chromatography method with a detection limit of 0.1 pmol/sample. We found that a low extramitochondrial Ca(2+) level (2 microM) promoted the release of approximately 13% of the total alamethicin releasable pool of cytochrome c from mitochondria. This release was not depending of MPT; it was mediated by Ca(2+)-induced ROS production and cardiolipin peroxidation and appears to involve the voltage-dependent anion channel. High extramitochondrial Ca(2+) level (20 microM) promoted approximately 45% of the total releasable pool of cytochrome c. This process was MPT-dependent and was also mediated by ROS and cardiolipin. It is suggested that distinct Ca(2+) levels may determine the mode and the amount of cytochrome c release from rat liver mitochondria. The data may help to clarify the molecular mechanism underlying the Ca(2+)-induced release of cytochrome c from rat liver mitochondria and the role played by ROS and cardiolipin in this process.  相似文献   
67.
68.
In order to further investigate the mechanism regulating the control of mitochondrial respiration by thyroid hormones, the effect of the hyperthyroidism on the kinetic characteristics of cytocrome c oxidase in rat heart mitochondria was studied. Mitochondrial preparations from both control and hyperthyroid rats had equivalent Km values for cytochrome c, while the maximal activity of cytochrome oxidase was significantly increased (by around 30%) in mitochondrial rats. This enhanced activity of cytochrome oxidase was associated to a parallel increases in mitochondrial State 3 respiration. The hormone treatment resulted in a decrease in the flux control coefficient of the oxidase. The enhanced activity of cytochrome oxidase in hyperthyroid rats does not appear to be dependent on an increases in the mass of this enzyme complex in that the heme aa3 content was equivalent in both hyperthyroid and control preparations. The Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria from hyperthyroid rats as compared with control rats in the breakpoint of the biphasic plot is shifted to a lower temperature. Cardiolipin content was significantly increased in mitochondrial preparations from hyperthyroid rats, while there were no significant alterations in the fatty acid composition of cardiolipin of control and hyperthyroid preparations. The results support the conclusion that the enhanced cytochrome oxidase activity in heart mitochondrial preparations from hyperthyroid rats is due to a specific increase in the content of cardiolipin.  相似文献   
69.
The effect of aging and treatment with acetyl-l-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria was studied. It was found that the activity of both these mitochondrial protein systems was reduced (by around 30%) in aged animals. Treatment of aged rats with acetyl-l-carnitine almost completely reversed this effect. Changes in the mitochondrial cardiolipin content appear to be responsible for these effects of acetyl-l-carnitine.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号