首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   3篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   8篇
  1978年   4篇
  1977年   8篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
  1971年   5篇
  1970年   3篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
排序方式: 共有113条查询结果,搜索用时 312 毫秒
11.
In Saccharomyces cerevisiae, alpha-isopropylmalate (alpha-IPM), which is produced in mitochondria, must be exported to the cytosol where it is required for leucine biosynthesis. Recombinant and reconstituted mitochondrial oxalacetate carrier (Oac1p) efficiently transported alpha-IPM in addition to its known substrates oxalacetate, sulfate, and malonate and in contrast to other di- and tricarboxylate transporters as well as the previously proposed alpha-IPM transporter. Transport was saturable with a half-saturation constant of 75 +/- 4 microm for alpha-IPM and 0.31 +/- 0.04 mm for beta-IPM and was inhibited by the substrates of Oac1p. Though not transported, alpha-ketoisocaproate, the immediate precursor of leucine in the biosynthetic pathway, inhibited Oac1p activity competitively. In contrast, leucine, alpha-ketoisovalerate, valine, and isoleucine neither inhibited nor were transported by Oac1p. Consistent with the function of Oac1p as an alpha-IPM transporter, cells lacking the gene for this carrier required leucine for optimal growth on fermentable carbon sources. Single deletions of other mitochondrial carrier genes or of LEU4, which is the only other enzyme that can provide the cytosol with alpha-IPM (in addition to Oac1p) exhibited no growth defect, whereas the double mutant DeltaOAC1DeltaLEU4 did not grow at all on fermentable substrates in the absence of leucine. The lack of growth of DeltaOAC1DeltaLEU4 cells was partially restored by adding the leucine biosynthetic cytosolic intermediates alpha-ketoisocaproate and alpha-IPM to these cells as well as by complementing them with one of the two unknown human mitochondrial carriers SLC25A34 and SLC25A35. Oac1p is important for leucine biosynthesis on fermentable carbon sources catalyzing the export of alpha-IPM, probably in exchange for oxalacetate.  相似文献   
12.
Cytochrome c release from mitochondria is a critical event in the apoptosis induction. Dissociation of cytochrome c from the mitochondrial inner membrane (IMM) is a necessary first step for cytochrome c release. In the present study, the effect of reactive oxygen species (ROS) on the dissociation of cytochrome c from beef-heart submitochondrial particles (SMP) and on the cardiolipin content was investigated. Exposure of SMP to mitochondrial-mediated ROS generation resulted in a large dissociation of cytochrome c from SMP and in a parallel loss of cardiolipin. Both these effects were directly and significantly correlated and also abolished by superoxide dismutase+catalase. These results demonstrate that ROS generation induces the dissociation of cytochrome c from IMM via cardiolipin peroxidation. The data may prove useful in clarifying the molecular mechanism underlying the release of cytochrome c from the mitochondria to the cytosol.  相似文献   
13.
The amino acid composition of stalk and cap cell wall polypeptides of the unicellular alga Polyphysa (A.) cliftonii has been investigated. In spite of chemical and physical differences between stalk and can cell wall polysaccharides, the amino acid composition of the cell wall polypeptides appeared qualitatively similar in both structures. however, quantitative differences have been observed. The results are discussed on the basis of a possible role of the polypeptides in the growth of the cell wall.  相似文献   
14.
15.
16.
The Lpp2981 gene from Legionella pneumophila, the causative agent of Legionnaire’s disease, was cloned into the pMWT7 plasmid. The construct was used to express this gene in Escherichia coli. Five different bacterial strains were tested to overexpress the gene but without success. Sequence analysis revealed a cluster of four rare codons near the 5′-end of the gene. These codons were replaced with those commonly used in E. coli. The mutated Lpp2981 gene was successfully expressed in all the E. coli strains tested. The expressed protein (with an apparent molecular mass of 30 kDa) was collected in the insoluble fraction of the cell lysate, purified as inclusion bodies and functionally reconstituted into liposomes. The highest level of overexpression was obtained in E. coli C0214 after 6 h of induction with isopropyl-β-d-thiogalactopyranoside at 37 °C, yielding 74 mg of purified protein per liter of culture. We conclude that the clustering of rare codons at the 5′-end of the open-reading frame is a critical factor for the heterologous expression of Lpp2981 in E. coli.  相似文献   
17.
18.
19.
20.
The Mg2+- and Ca2+-stimulated ATPase (bacterial coupling factor) has been investigated in solution with different independent techniques. The molecular weight of the five-subunit enzyme was found to be 345,000 +/- 5,000 by means of light scattering, 350,000 by sedimentation equilibrium experiments, and 358,000 by means of small-angle x-ray scattering. The radius of gyration was found to be 41.9 A, the volume 7.39 x 10(5) A3, and the surface to volume ratio 5.5 x 10(-2) A-1 from small-angle x-ray scattering measurements of the enzyme in solution. The degree of hydration was found to be 0.62 ml of H2O/g of ATPase. The translational diffusion coefficient was determined to be 3.47 x 10(-7) cm2 s-1 by means of inelastic light scattering. The distribution of the scattered intensity near the origin appears to be bimodal, suggesting that the ATPase molecule is composed of spherical parts bound together by a flexible polypeptide chain. The largest dimension of the ATPase in solution is 120.0 A, determined from the pair distribution function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号