首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584篇
  免费   131篇
  2020年   5篇
  2019年   14篇
  2018年   7篇
  2017年   11篇
  2016年   17篇
  2015年   19篇
  2014年   18篇
  2013年   19篇
  2012年   32篇
  2011年   31篇
  2010年   25篇
  2009年   18篇
  2008年   18篇
  2007年   20篇
  2006年   31篇
  2005年   24篇
  2004年   21篇
  2003年   28篇
  2002年   20篇
  2001年   19篇
  2000年   26篇
  1999年   13篇
  1998年   16篇
  1997年   8篇
  1995年   11篇
  1994年   10篇
  1993年   6篇
  1992年   14篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   8篇
  1980年   4篇
  1979年   12篇
  1978年   7篇
  1977年   11篇
  1976年   13篇
  1975年   13篇
  1974年   7篇
  1973年   4篇
  1972年   10篇
  1971年   5篇
  1969年   5篇
  1968年   4篇
排序方式: 共有715条查询结果,搜索用时 34 毫秒
91.
Enterococci in the Environment   总被引:3,自引:0,他引:3  
Summary: Enterococci are common, commensal members of gut communities in mammals and birds, yet they are also opportunistic pathogens that cause millions of human and animal infections annually. Because they are shed in human and animal feces, are readily culturable, and predict human health risks from exposure to polluted recreational waters, they are used as surrogates for waterborne pathogens and as fecal indicator bacteria (FIB) in research and in water quality testing throughout the world. Evidence from several decades of research demonstrates, however, that enterococci may be present in high densities in the absence of obvious fecal sources and that environmental reservoirs of these FIB are important sources and sinks, with the potential to impact water quality. This review focuses on the distribution and microbial ecology of enterococci in environmental (secondary) habitats, including the effect of environmental stressors; an outline of their known and apparent sources, sinks, and fluxes; and an overview of the use of enterococci as FIB. Finally, the significance of emerging methodologies, such as microbial source tracking (MST) and empirical predictive models, as tools in water quality monitoring is addressed. The mounting evidence for widespread extraenteric sources and reservoirs of enterococci demonstrates the versatility of the genus Enterococcus and argues for the necessity of a better understanding of their ecology in natural environments, as well as their roles as opportunistic pathogens and indicators of human pathogens.  相似文献   
92.
93.
Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.  相似文献   
94.
Callus cultures from olive (Olea europaea L.) were used to study characteristics of desaturation in this oil-rich tissue. The incorporation of [1-(14)C]oleate and [1-(14)C]linoleate into complex lipids and their further desaturation was followed in incubations of up to 48 h. Both radiolabelled fatty acids were rapidly incorporated into lipids, especially phosphatidylcholine and triacylglycerol. Radiolabelling of these two lipids peaked after 1-4 h, after which it fell. In contrast, other phosphoglycerides and the galactosylglycerides were labelled in a more sustained manner. [1-(14)C]Linoleate was almost exclusively found in the galactolipids. With [1-(14)C]linoleate as a precursor, the only significant desaturation to linolenate was in the galactolipids. Monogalactosyldiacylglycerol was the first lipid in which [1-(14)C]linoleate and [1-(14)C]linolenate appeared after incubation of the calli with [1-(14)C]oleate and [1-(14)C]linoleate, respectively. The presence of radioactivity in the plastidial lipids shows that both [1-(14)C]oleate and [1-(14)C]linoleate can freely enter the chloroplast. Two important environmental effects were also examined. Raised incubation temperatures (30-35 degrees C) reduced oleate desaturation and this was also reflected in the endogenous fatty acid composition. Low light also caused less oleate desaturation. The data indicate that lysophosphatidylcholine acyltransferase is important for the entry of oleate and linoleate into olive callus lipid metabolism and phospholipid:diacylglycerol acyltransferase may be involved in triacylglycerol biosynthesis. In addition, it is shown that plastid desaturases are mainly responsible for the production of polyunsaturated fatty acids. Individual fatty acid desaturases were differently susceptible to environmental stresses with FAD2 being reduced by both high temperature and low light, whereas FAD7 was only affected by high temperature.  相似文献   
95.
96.
Glycogen synthase kinase-3 (GSK-3) is a key component of several signaling pathways including those regulated by Wnt and insulin ligands. Specificity in GSK-3 signaling is thought to involve interactions with scaffold proteins that localize GSK-3 regulators and substrates. This report shows that GSK-3 forms a low affinity homodimer that is disrupted by binding to Axin and Frat. Based on the crystal structure of GSK-3, we have used surface-scanning mutagenesis to identify residues that differentially affect GSK-3 interactions. Mutations that disrupt Frat and Axin cluster at the dimer interface explaining their effect on homodimer formation. Loss of the Axin binding site blocks the ability of dominant negative GSK-3 to cause axis duplication in Xenopus embryos. The Axin binding site is conserved within all GSK-3 proteins, and its loss affects both cell motility and gene expression in the nonmetazoan, Dictyostelium. Surprisingly, we find no genetic interaction between a non-Axin-binding GSK-3 mutant and T-cell factor activity, arguing that Axin interactions alone cannot explain the regulation of T-cell factor-mediated gene expression.  相似文献   
97.
Vancomycin-resistant Enterococcus spp. (VRE) were isolated from sewage and chicken feces but not from other animal fecal sources (dog, cow, and pig) or from surface waters tested. VRE from hospital wastewater were resistant to ≥20 μg of vancomycin/ml and possessed the vanA gene. VRE from residential wastewater and chicken feces were resistant to 3 to 5 μg of vancomycin/ml and possessed the vanC gene.  相似文献   
98.
99.
Ralstonia eutropha JMP134(pJP4) and several other species of motile bacteria can degrade the herbicide 2,4-dichlorophenoxyacetate (2,4-D), but it was not known if bacteria could sense and swim towards 2,4-D by the process of chemotaxis. Wild-type R. eutropha cells were chemotactically attracted to 2,4-D in swarm plate assays and qualitative capillary assays. The chemotactic response was induced by growth with 2,4-D and depended on the presence of the catabolic plasmid pJP4, which harbors the tfd genes for 2,4-D degradation. The tfd cluster also encodes a permease for 2,4-D named TfdK. A tfdK mutant was not chemotactic to 2,4-D, even though it grew at wild-type rates on 2,4-D.  相似文献   
100.
The stability of heterologous proteins secreted by gram-positive bacteria is greatly influenced by the microenvironment on the trans side of the cytoplasmic membrane, and secreted heterologous proteins are susceptible to rapid degradation by host cell proteases. In Bacillus subtilis, degradation occurs either as the proteins emerge from the presecretory translocase and prior to folding into their native conformation or after the native conformation has been reached. The former process generally involves membrane- and/or cell wall-bound proteases, while the latter involves proteases that are released into the culture medium. The identification and manipulation of factors that influence the folding of heterologous proteins has the potential to improve the yield of secreted heterologous proteins. Recombinant anthrax protective antigen (rPA) has been used as a model secreted heterologous protein because it is sensitive to proteolytic degradation both before and after folding into its native conformation. This paper describes the influence of the microenvironment on the trans side of the cytoplasmic membrane on the stability of rPA. Specifically, we have determined the influence of net cell wall charge and its modulation by the extent to which the anionic polymer teichoic acid is D-alanylated on the secretion and stability of rPA. The potential role of the dlt operon, responsible for D-alanylation, was investigated using a Bacillus subtilis strain encoding an inducible dlt operon. We show that, in the absence of D-alanylation, the yield of secreted rPA is increased 2.5-fold. The function of D-alanylation and the use of rPA as a model protein are evaluated with respect to the optimization of B. subtilis for the secretion of heterologous proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号