首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   28篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   15篇
  2012年   18篇
  2011年   16篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   14篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   13篇
  2002年   14篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有224条查询结果,搜索用时 31 毫秒
31.
Many of the marine microorganisms which are adapted to grow at temperatures above 80°C accumulate di-myo-inositol phosphate (DIP) in response to heat stress. This led to the hypothesis that the solute plays a role in thermoprotection, but there is a lack of definitive experimental evidence. Mutant strains of Thermococcus kodakarensis (formerly Thermococcus kodakaraensis), manipulated in their ability to synthesize DIP, were constructed and used to investigate the involvement of DIP in thermoadaptation of this archaeon. The solute pool of the parental strain comprised DIP, aspartate, and α-glutamate. Under heat stress the level of DIP increased 20-fold compared to optimal conditions, whereas the pool of aspartate increased 4.3-fold in response to osmotic stress. Deleting the gene encoding the key enzyme in DIP synthesis, CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, abolished DIP synthesis. Conversely, overexpression of the same gene resulted in a mutant with restored ability to synthesize DIP. Despite the absence of DIP in the deletion mutant, this strain exhibited growth parameters similar to those of the parental strain, both at optimal (85°C) and supraoptimal (93.7°C) temperatures for growth. Analysis of the respective solute pools showed that DIP was replaced by aspartate. We conclude that DIP is part of the strategy used by T. kodakarensis to cope with heat stress, and aspartate can be used as an alternative solute of similar efficacy. This is the first study using mutants to demonstrate the involvement of compatible solutes in the thermoadaptation of (hyper)thermophilic organisms.Hyperthermophilic bacteria and archaea isolated from saline environments accumulate unusual organic solutes in response to osmotic as well as heat stress. Mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, mannosyl-di-myo-inositol phosphate (DIP), diglycerol phosphate, and glycero-phospho-myo-inositol are examples of compatible solutes highly restricted to thermophiles and hyperthermophiles (27, 31). Our team has, over several years, examined the compatible solute composition in a large number of hyperthermophiles and their accumulation under stressful conditions. The data reveal a trend toward specialization of roles in thermoadaptation and osmoadaptation. Indeed, mannosylglycerate and diglycerol phosphate typically accumulate in response to increased NaCl concentration in the growth medium, whereas the levels of DIP and derivatives consistently increase at supraoptimal growth temperatures (11, 16, 17, 27, 31).DIP is widespread among extreme archaeal hyperthermophiles, such as Methanotorris igneus, Aeropyrum pernix, Stetteria hydrogenophila, Pyrodictium occultum, Pyrolobus fumarii, Archaeoglobus spp., and all the members of the Thermococcales examined thus far, except Palaeococcus ferrophilus (5, 7, 11, 13, 16, 18, 31). This organic solute has also been found in representatives of the two hyperthermophilic bacterial genera, Aquifex and Thermotoga (14, 17, 22).The specific chemical nature of solutes encountered in hyperthermophiles, together with their accumulation in response to elevated temperatures, led to the hypothesis that they play a role in thermoprotection of cellular components in vivo. However, there is a lack of convincing experimental evidence, such as that obtained with suitable mutants. Progress toward understanding the physiological functions of these solutes critically depends on two conditions: the availability of genetic tools to manipulate hyperthermophilic organisms and knowledge about the genes and enzymes implicated in the synthesis of these unusual solutes.Thermococcus kodakarensis (formerly Thermococcus kodakaraensis) is a member of the order Thermococcales with an optimal growth temperature of 85°C and is able to grow at temperatures up to 94°C in batch cultures. The NaCl concentration for optimal growth matches that of seawater (1). T. kodakarensis is the only marine hyperthermophile for which a number of genetic tools have been developed, including Escherichia coli-T. kodakarensis shuttle vectors and a reliable gene disruption system (19, 29, 32, 34). The genome of T. kodakarensis possesses a gene encoding CTP:inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase (IPCT/DIPPS), a key enzyme in DIP synthesis (2, 25, 26). This enzyme catalyzes the synthesis of CDP-inositol from CTP and inositol-1-phosphate as well as the transfer of the inositol group from CDP-inositol to a second molecule of inositol-1-phosphate to yield a phosphorylated form of DIP (2). Therefore, we set out to investigate whether DIP was involved in thermoadaptation of T. kodakarensis. A DIP-deficient mutant was constructed by deleting the IPCT/DIPPS gene; subsequently, this strain was complemented in this activity by inserting the gene under the control of a constitutive promoter, resulting in a construct with restored ability to synthesize DIP. The effects of heat and osmotic stress on the pattern of solute accumulation and on the growth profiles of the two mutants provided evidence for the involvement of DIP in thermoprotection.  相似文献   
32.
The suppressive effects on acute alcoholic liver injury of S-adenosylmethionine (SAM) and the sake yeast, Saccharomyces cerevisiae Kyokai No. 9, have been shown previously. To enhance the suppression of acute alcoholic liver injury by sake yeast, we prepared SAM-accumulating sake yeast (SAM yeast). Male C57BL/6 mice that had been fed on a diet containing 0.25% SAM yeast or sake yeast for two weeks received three doses of ethanol (5 g/kg BW). In the mice fed on the SAM yeast, the ethanol-induced increases in both triglyceride (TG) and alanine aminotransferase (ALT) were significantly repressed. In addition, the SAM yeast-fed mice did not show an ethanol-induced decrease in hepatic SAM level, suggesting that a disorder of methionine metabolism in the liver caused by ethanol was relieved by the SAM yeast. These results suggest that the SAM yeast had a stronger effect suppressing acute alcoholic liver injury in mice than the sake yeast.  相似文献   
33.
The hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 harbors a structurally novel, Type III Rubisco (Rbc(Tk)). In terms of protein engineering of Rubiscos, the enzyme may provide an alternative target to the conventional Type I and Type II enzymes. With a future aim to improve the catalytic properties of Rbc(Tk), here we examined whether or not the enzyme could support growth of a mesophilic organism dependent on CO2 fixation. Via double-crossover homologous recombination, we first deleted three Rubisco genes present on the chromosome of the photosynthetic mesophile Rhodopseudomonas palustris No. 7. The mutant strain (delta3) could neither grow under photoautotrophic nor photoheterotrophic conditions. We introduced the rbc(Tk) gene into strain delta3 either on a plasmid, or by integrating the gene onto the chromosome. The two transformant strains harboring rbc(Tk) displayed growth under photoautotrophic and photoheterotrophic conditions, both dependent on CO2 fixation. Specific growth rates and Rubisco activity levels were compared under photoheterotrophic conditions among the two transformants and the wild-type strain. We observed that the levels of Rubisco activity in the respective cell-free extracts correlated well with the specific growth rates. Immunoprecipitation experiments revealed that Rubisco activity detected in the transformants was derived solely from Rbc(Tk). These results demonstrated that the Type III Rbc(Tk) from a hyperthermophile could support CO2 fixation in a mesophilic organism, and that the specific growth rate of the transformant can be used as a convenient parameter for selection of engineered proteins with improved Rubisco activity.  相似文献   
34.
S-Adenosylmethionine (SAM) is an important metabolite that participates in many reactions as a methyl group donor in all organisms, and has attracted much interest in clinical research because of its potential to improve many diseases, such as depression, liver disease, and osteoarthritis. Because of these potential applications, a more efficient means is needed to produce SAM. Accordingly, we developed a positive selection method to isolate SAM-accumulating yeast in this study. In Saccharomyces cerevisiae, one of the main reactions consuming SAM is thought to be the methylation reaction in the biosynthesis of ergosterol that is catalyzed by Erg6p. Mutants with deficiencies in ergosterol biosynthesis may accumulate SAM as a result of the reduction of SAM consumption in ergosterol biosynthesis. We have applied this method to isolate SAM-accumulating yeasts with nystatin, which has been used to select mutants with deficiencies in ergosterol biosynthesis. SAM-accumulating mutants from S. cerevisiae K-9 and X2180-1A were efficiently isolated through this method. These mutants accumulated 1.7–5.5 times more SAM than their parental strains. NMR and GC-MS analyses suggested that two mutants from K-9 have a mutation in the erg4 gene, and erg4 disruptants from laboratory strains also accumulated more SAM than their parental strains. These results indicate that mutants having mutations in the genes for enzymes that act downstream of Erg6p in ergosterol biosynthesis are effective in accumulating SAM.  相似文献   
35.
36.
37.
To elucidate the function of MAS-related GPCR, member D (MRGD) in cancers, we investigated the in vitro and in vivo oncogenic function of MRGD using murine fibroblast cell line NIH3T3 in which MRGD is stably expressed. The expression pattern of MRGD in clinical samples was also analyzed. We found that overexpression of MRGD in NIH3T3 induced focus formation and multi-cellular spheroid formation, and promoted tumors in nude mice. In other words, overexpression of MRGD in NIH3T3 induced the loss of contact inhibition, anchorage-independent growth and in vivo tumorigenesis. Furthermore, it was found that the ligand of MRGD, beta-alanine, enhanced spheroid formation in MRGD-expressing NIH3T3 cells. From investigation of clinical cancer tissues, we found high expression of MRGD in several lung cancers by immunohistochemistry as well as real time PCR. Based on these results, MRGD could be involved in tumorigenesis and could also be a novel anticancer drug target.  相似文献   
38.
We studied the molecular evolution of H gene in four prevalent Asian genotypes (D3, D5, D9, and H1) of measles virus (MeV). We estimated the evolutionary time scale of the gene by the Bayesian Markov Chain Monte Carlo (MCMC) method. In addition, we predicted the changes in structure of H protein due to selective pressures. The phylogenetic tree showed that the first division of these genotypes occurred around 1931, and further division of each type in the 1960–1970s resulted in four genotypes. The rate of molecular evolution was relatively slow (5.57×10−4 substitutions per site per year). Only two positively selected sites (F476L and Q575K) were identified in H protein, although these substitutions might not have imparted significant changes to the structure of the protein or the epitopes for phylactic antibodies. The results suggested that the prevalent Asian MeV genotypes were generated over approximately 30–40 years and H protein was well conserved.  相似文献   
39.
Inorganic phosphate is an essential nutrient. In general, microorganisms take up phosphorus when the extracellular phosphorus concentration is low, but not when it is high. In Saccharomyces cerevisiae, the major phosphate transporters, such as Pho84p, and acid phosphatases (APases), such as Pho5p, are regulated in parallel by the phosphate signal transduction pathway (PHO pathway). We found that PHO mutants expressing PHO84 and PHO5, even under high-P conditions, could take up phosphorus at twice the rate of the wild-type strain. The regulatory pathway for phosphorus accumulation in two wastewater treatment yeasts, Hansenula fabianii J640 and Hansenula anomala J224-1, was found to be similar to that in S. cerevisiae. We screened for mutants of these yeasts that constitutively expressed APase. Such mutants formed blue colonies on high phosphorus concentration agar plates containing 5-bromo-4-chloro-3-indolylphosphate (X-phosphate). We found four mutants of H. fabianii J640 and one mutant of H. anomala J224-1 that accumulated from 2.2 to 3.5 times more phosphorus than the parent strains. The growth rates and abilities to remove dissolved total nitrogen and dissolved organic carbon of the mutants were similar to those of the parent strains. In addition, the mutants removed 95% of dissolved total phosphorus from shochu wastewater, while the parent strain removed only 50%.  相似文献   
40.
Acid-sensing ion channel 2 (ASIC2) plays a role as a mechanorecptor and acid receptor in the peripheral and central nervous systems. However, several recent studies have suggested that ASIC2 is expressed in several organs, in addition to the nervous system. We have examined the expression and distribution of ASIC2 in rat ciliated cells (trachea and oviduct) and stereociliated cells (epididymis, Corti organ, and ampullary crest) by immunohistochemistry and transmission electron microscopy (TEM). Immunohistochemistry revealed that ASIC2 was expressed in both ciliated cells and stereociliated cells, but the localization differed between these cell types. In ciliated cells, ASIC2 was coexpressed with a cilial marker (acetylated tubulin). In stereociliated cells stained with a stereocilial marker (phalloidin), ASIC2 was observed in the cell body. Observation by TEM suggested that ASIC2 expression was present at the apical side of the cilial membrane in ciliated cells and at the apical side of the cell body in stereociliated cells. This study thus indicates that the proton receptor ASIC2 is expressed in both ciliated and stereociliated cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号