首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   13篇
  国内免费   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   11篇
  2012年   15篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   8篇
  2003年   14篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1962年   2篇
  1961年   1篇
  1958年   1篇
  1957年   1篇
  1937年   1篇
  1935年   5篇
  1931年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
31.
To investigate the role of CD45 in rat NK cell function, we developed new mAbs directed against rat CD45. mAb ANK12 binds to a high molecular isoform of CD45 and mAb ANK74 binds to the common part on all known CD45 isoforms, as has been described for the anti-rat CD45 mAb OX1. The ability of these mAbs to affect NK cell-mediated lysis was tested using the Fc receptor-positive target cell line P815. mAb ANK12 was found to significantly enhance the lysis of P815, whereas ANK74 and the anti-CD45 mAb OX1 did not. In addition, cross-linking of the CD45 isoform by ANK12 induced tyrosine phosphorylation of specific proteins in NK cells. Subsequently, the involvement of CD45 in the negative signaling after "self" MHC class I recognition by rat NK cells was investigated. The anti-CD45 mAbs were found to affect NK cell-mediated lysis of syngeneic tumor cell lines, depending upon the expression level of MHC class I on target cells. mAbs ANK74 and OX1 only inhibited lysis of the syngeneic tumor cell lines that expressed low levels of MHC class I. Furthermore, both mAbs caused an inhibition of NK cell-mediated lysis of these tumor cell lines when MHC class I molecules on the tumor cell lines were masked by an Ab. These results suggest that CD45 regulates the inhibitory signal pathway after self MHC class I recognition, supposedly by dephosphorylation of proteins.  相似文献   
32.
Binding of low density lipoprotein (LDL) to platelets enhances platelet responsiveness to various aggregation-inducing agents. However, the identity of the platelet surface receptor for LDL is unknown. We have previously reported that binding of the LDL component apolipoprotein B100 to platelets induces rapid phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Here, we show that LDL-dependent activation of this kinase is inhibited by receptor-associated protein (RAP), an inhibitor of members of the LDL receptor family. Confocal microscopy revealed a high degree of co-localization of LDL and a splice variant of the LDL receptor family member apolipoprotein E receptor-2 (apoER2') at the platelet surface, suggesting that apoER2' may contribute to LDL-induced platelet signaling. Indeed, LDL was unable to induce p38MAPK activation in platelets of apoER2-deficient mice. Furthermore, LDL bound efficiently to soluble apoER2', and the transient LDL-induced activation of p38MAPK was mimicked by an anti-apoER2 antibody. Association of LDL to platelets resulted in tyrosine phosphorylation of apoER2', a process that was inhibited in the presence of PP1, an inhibitor of Src-like tyrosine kinases. Moreover, phosphorylated but not native apoER2' co-precipitated with the Src family member Fgr. This suggests that exposure of platelets to LDL induces association of apoER2' to Fgr, a kinase that is able to activate p38MAPK. In conclusion, our data indicate that apoER2' contributes to LDL-dependent sensitization of platelets.  相似文献   
33.
Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one plant by crossings, we show that it is possible to increase the amount and alter the composition of the blend of monoterpenoids produced in tobacco plants. The transgenic tobacco plant line with the three introduced monoterpene synthases is emitting beta-pinene, limonene, and gamma-terpinene and a number of side products of the introduced monoterpene synthases, from its leaves and flowers, in addition to the terpenoids emitted by wild-type plants. The results show that there is a sufficiently high level of substrate accessible for the introduced enzymes.  相似文献   
34.
Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a beta-pinene synthase named Cl(-)betaPINS, a gamma-terpinene synthase named ClgammaTS, and two limonene synthases named Cl(+)LIMS1 and Cl(+)LIMS2 were recently isolated [J. Lücker et al., Eur. J. Biochem. 269 (2002) 3160]. The aim of our work in this study was to identify domains within these monoterpene synthase enzymes determining the product specificity. Domain swapping experiments between Cl(-)betaPINS and ClgammaTS and between Cl(+)LIMS2 and ClgammaTS were conducted. We found that within the C-terminal domain of these monoterpene synthases, a region comprising 200 amino acids, of which 41 are different between Cl(-)betaPINS and ClgammaTS, determines the specificity for the formation of beta-pinene or gamma-terpinene, respectively, while another region localized further downstream is required for a chimeric enzyme to yield products in the same ratio as in the wild-type ClgammaTS. For Cl(+)LIMS2, the two domains together appear to be sufficient for its enzyme specificity, but many chimeras were inactive probably due to the low homology with ClgammaTS. Molecular modeling was used to further pinpoint the amino acids responsible for the differences in product specificity of ClgammaTS and Cl(-)betaPINS.  相似文献   
35.
Human lactoferrin (hLF) is an iron-binding glycoprotein involved in the innate host defense. The positively charged N-terminal domain of hLF mediates several of its activities by interacting with ligands such as bacterial lipopolysaccharide (LPS), specific receptors, and other proteins. This cationic domain is highly susceptible to limited proteolysis, which impacts on the affinity of hLF for the ligand. An analytical method, employing cation-exchange chromatography on Mono S, was developed to assess the N-terminal integrity of hLF preparations. The method, which separates N-terminally intact hLF from hLF species lacking two (Gly(1)-Arg(2)) or three (Gly(1)-Arg(2)-Arg(3)) residues, showed that 5-58% of total hLF in commercially obtained preparations was N-terminally degraded. The elution profile of hLF on Mono S unequivocally differed from lactoferrins from other species as well as homologous and other whey proteins. Analysis of fresh human whey samples revealed two variants of N-terminally intact hLF, but not limitedly proteolyzed hLF. Mono S chromatography of 2 out of 26 individual human whey samples showed a rare polymorphic hLF variant with three N-terminal arginines (Gly(1)-Arg(2)-Arg(3)-Arg(4)-Ser(5)-) instead of the usual variant with four N-terminal arginines (Gly(1)-Arg(2)-Arg(3)-Arg(4)-Arg(5)-Ser(6)-). In conclusion, Mono S cation-exchange chromatography appeared a robust method to assess the identity, purity, N-terminal integrity, and the presence of polymorphic and intact hLF variants.  相似文献   
36.
37.
Scalable multiplexed amplification technologies are needed for cost-effective large-scale genotyping of genetic markers such as single nucleotide polymorphisms (SNPs). We present SNPWave, a novel SNP genotyping technology to detect various subsets of sequences in a flexible fashion in a fixed detection format. SNPWave is based on highly multiplexed ligation, followed by amplification of up to 20 ligated probes in a single PCR. Depending on the multiplexing level of the ligation reaction, the latter employs selective amplification using the amplified fragment length polymorphism (AFLP) technology. Detection of SNPWave reaction products is based on size separation on a sequencing instrument with multiple fluorescence labels and short run times. The SNPWave technique is illustrated by a 100-plex genotyping assay for Arabidopsis, a 40-plex assay for tomato and a 10-plex assay for Caenorhabditis elegans, detected on the MegaBACE 1000 capillary sequencer.  相似文献   
38.
Current morphology-based cervical cancer screening is associated with significant false-positive and false-negative results. Tumor suppressor gene hypermethylation is frequently present in cervical cancer. It is unknown whether a cervical scraping reflects the methylation status of the underlying epithelium, and it is therefore unclear whether quantitative hypermethylation specific PCR (QMSP) on cervical scrapings could be used as a future screening method augmenting the current approach. Cervical scrapings and paired fresh frozen cervical tissue samples were obtained from 53 cervical cancer patients and 45 controls. All scrapings were morphologically scored and analyzed with QMSP for the genes APC, DAPK, MGMT, and GSTP1. To adjust for DNA input, hypermethylation ratios were calculated against DNA levels of a reference gene. Hypermethylation ratios of paired fresh frozen tissue samples and scrapings of cervical cancer patients and controls were strongly related (Spearman correlation coefficient, 0.80 for APC, 0.98 for DAPK, and 0.83 for MGMT; P < 0.001). More cervical cancer patients than controls were DAPK positive (P < 0.001). When cutoff levels for ratios were defined to be above the highest ratio observed in controls, QMSP in cervical scrapings identified 32 (67%) of 48 cervical cancer patients. This feasibility study demonstrates that QMSP on cervical scrapings holds promise as a new diagnostic tool for cervical cancer. The addition of more genes specifically methylated in cervical cancer will further improve the assay.  相似文献   
39.
The objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bovine cartilage explants. Both discs and annulus were either treated for 24 hours with 0.1% hyaluronidase followed by 24 hours with 10 U/ml collagenase or left untreated (controls). Discs and annulus were reassembled and implanted subcutaneously in nude mice for 5 weeks. Integration of disc with surrounding cartilage was assessed histologically and tested biomechanically by performing a push-out test. After 5 weeks a significant increase in viable cell counts was seen in wound edges of the enzyme-treated group as compared with controls. Furthermore, matrix integration (expressed as a percentage of the total interface length that was connected; mean ± standard error) was 83 ± 15% in the treated samples versus 44 ± 40% in the untreated controls. In the enzyme-treated group only, picro-Sirius Red staining revealed collagen crossing the interface perpendicular to the wound surface. Immunohistochemical analyses demonstrated that the interface tissue contained cartilage-specific collagen type II. Collagen type I was found only in a small region of fibrous tissue at the level of the superficial layer, and collagen type III was completely absent in both groups. A significant difference in interfacial strength was found using the push-out test: 1.32 ± 0.15 MPa in the enzyme-treated group versus 0.84 ± 0.14 MPa in the untreated controls. The study shows that enzyme treatment of cartilage wounds increases histological integration and improves biomechanical bonding strength. Enzymatic treatment may represent a promising addition to current techniques for articular cartilage repair.  相似文献   
40.
Prostacyclin is a potent inhibitor of agonist-induced Ca2+ increases in platelets, but in the megakaryocytic cell line MEG-01 this inhibition is absent. Using human megakaryocytic cell lines representing different stages in megakaryocyte (Mk) maturation as well as stem cells and immature and mature megakaryocytes, we show that the inhibition by prostacyclin develops at a late maturation stage shortly before platelets are formed. This late appearance is not caused by insufficient cAMP formation or absent protein kinase A (PKA) activity in immature cells. Instead, the appearance of Ca2+ inhibition by prostacyclin is accompanied by a sharp increase in the expression of the catalytic subunit of PKA (PKA-C) but not by changes in the expression of the PKA-regulatory subunits Ialpha/beta, IIalpha, and IIbeta. Overexpression of PKA-C in the megakaryocytic cell line CHRF-288-11 potentiates the Ca2+ inhibition by prostacyclin. Thus, up-regulation of PKA-C appears to be a key step in the development of Ca2+ inhibition by prostacyclin in platelets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号