首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   27篇
  国内免费   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2016年   3篇
  2015年   12篇
  2014年   11篇
  2013年   9篇
  2012年   13篇
  2011年   13篇
  2010年   19篇
  2009年   19篇
  2008年   16篇
  2007年   23篇
  2006年   13篇
  2005年   31篇
  2004年   20篇
  2003年   18篇
  2002年   13篇
  2001年   13篇
  2000年   16篇
  1999年   15篇
  1998年   8篇
  1997年   13篇
  1996年   15篇
  1995年   7篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1991年   11篇
  1990年   11篇
  1989年   11篇
  1988年   10篇
  1987年   3篇
  1986年   10篇
  1985年   9篇
  1984年   3篇
  1983年   12篇
  1982年   6篇
  1981年   9篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1974年   2篇
  1956年   3篇
  1952年   2篇
  1949年   2篇
  1875年   1篇
排序方式: 共有488条查询结果,搜索用时 656 毫秒
61.
The effects of water deficit and high temperature on the production of alpha-amylase inhibitor 1 (alpha-AI-1) were studied in transgenic peas (Pisum sativum L.) that were developed to control the seed-feeding pea weevil (Bruchus pisorum L., Coleoptera: Bruchidae). Transgenic and non-transgenic plants were subjected to water-deficit and high-temperature treatments under controlled conditions in the glasshouse and growth cabinet, beginning 1 week after the first pods were formed. In the water-deficit treatments, the peas were either adequately watered (control) or water was withheld after first pod formation. The high-temperature experiments were performed in two growth cabinets, one maintained at 27/22 degrees C (control) and one at 32/27 degrees C day/night temperatures, with the vapour pressure deficit maintained at 1.3 kPa. The plants exposure to high temperatures and water deficit produced 27% and 79% fewer seeds, respectively, than the controls. In the transgenic peas the level of alpha-AI-1 as a percentage of total protein was not influenced by water stress, but was reduced on average by 36.3% (the range in two experiments was 11-50%) in the high-temperature treatment. Transgenic and non-transgenic pods of plants grown at 27/22 degrees C and 32/27 degrees C were inoculated with pea weevil eggs to evaluate whether the reduction in level of alpha-AI-1 in the transgenic pea seeds affected pea weevil development and survival. At the higher temperatures, 39% of adult pea weevil emerged, compared to 1.2% in the transgenic peas grown at the lower temperatures, indicating that high temperature reduced the protective capacity of the transgenic peas.  相似文献   
62.
Stromal cells such as fibroblasts play an important role in defining tissue-specific responses during the resolution of inflammation. We hypothesized that this involves tissue-specific regulation of glucocorticoids, mediated via differential regulation of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Expression, activity and function of 11β-HSD1 was assessed in matched fibroblasts derived from various tissues (synovium, bone marrow and skin) obtained from patients with rheumatoid arthritis or osteoarthritis. 11β-HSD1 was expressed in fibroblasts from all tissues but mRNA levels and enzyme activity were higher in synovial fibroblasts (2-fold and 13-fold higher mRNA levels in dermal and synovial fibroblasts, respectively, relative to bone marrow). Expression and activity of the enzyme increased in all fibroblasts following treatment with tumour necrosis factor-α or IL-1β (bone marrow: 8-fold and 37-fold, respectively, compared to vehicle; dermal fibroblasts: 4-fold and 14-fold; synovial fibroblasts: 7-fold and 31-fold; all P < 0.01 compared with vehicle). Treatment with IL-4 or interferon-γ was without effect, and there was no difference in 11β-HSD1 expression between fibroblasts (from any site) obtained from patients with rheumatoid arthritis or osteoarthritis. In the presence of 100 nmol/l cortisone, IL-6 production – a characteristic feature of synovial derived fibroblasts – was significantly reduced in synovial but not dermal or bone marrow fibroblasts. This was prevented by co-treatment with an 11β-HSD inhibitor, emphasizing the potential for autocrine activation of glucocorticoids in synovial fibroblasts. These data indicate that differences in fibroblast-derived glucocorticoid production (via the enzyme 11β-HSD1) between cells from distinct anatomical locations may play a key role in the predeliction of certain tissues to develop persistent inflammation.  相似文献   
63.
The identification of novel bacterial cell-to-cell communication (quorum sensing) systems based on diffusible signal molecules, such as indole and the LuxS autoinducer-2, requires discrimination between true signalling molecules and metabolites present in culture supernatants. This depends on rigorous chemical characterisation and demonstration that the molecule controls cellular responses beyond those required to metabolise or detoxify the signal.  相似文献   
64.
65.
ABSTRACT: BACKGROUND: There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA) in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. RESULTS: In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30degreesC to 42degreesC. However, using Escherichia coli DH5alpha as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30degreesC, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42degreesC. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5alpha[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42degreesC. CONCLUSIONS: Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production.  相似文献   
66.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   
67.
AMPK: a nutrient and energy sensor that maintains energy homeostasis   总被引:2,自引:0,他引:2  
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.  相似文献   
68.
AMP-activated protein kinase: the energy charge hypothesis revisited.   总被引:31,自引:0,他引:31  
The AMP-activated protein kinase cascade is a sensor of cellular energy charge, and its existence provides strong support for the energy charge hypothesis first proposed by Daniel Atkinson in the 1960s. The system is activated in an ultrasensitive manner by cellular stresses that deplete ATP (and consequently elevate AMP), either by inhibiting ATP production (e.g., hypoxia), or by accelerating ATP consumption (e.g., exercise in muscle). Once activated, it switches on catabolic pathways, both acutely by phosphorylation of metabolic enzymes and chronically by effects on gene expression, and switches off many ATP-consuming processes. Recent work suggests that activation of AMPK is responsible for many of the effects of physical exercise, both the rapid metabolic effects and the adaptations that occur during training. Dominant mutations in regulatory subunit isoforms (gamma2 and gamma3) of AMPK, which appear to increase the basal activity in the absence of AMP, lead to hypertrophy of cardiac and skeletal muscle respectively.  相似文献   
69.
Cytological and organismal characteristics associated with cellular DNA content underpin most adaptionist interpretations of genome size variation. Since fishes are the only group of vertebrate for which relationships between genome size and key cellular parameters are uncertain, the cytological correlates of genome size were examined in this group. The cell and nuclear areas of erythrocytes showed a highly significant positive correlation with each other and with genome size across 22 cartilaginous and 201 ray-finned fishes. Regressions remained significant at all taxonomic levels, as well as among different fish lineages. However, the results revealed that cartilaginous fishes possess higher cytogenomic ratios than ray-finned fishes, as do cold-water fishes relative to their warm-water counterparts. Increases in genome size owing to ploidy shifts were found to influence cell and nucleus size in an immediate and causative manner, an effect that persists in ancient polyploid lineages. These correlations with cytological parameters known to have important influences on organismal phenotypes support an adaptive interpretation for genome size variation in fishes.  相似文献   
70.
The behaviour of summer and autumn winged forms of the black bean aphid, Aphis fabae Scopoli (Homoptera: Aphididae), was compared on two plants utilized at different stages of the insect’s life cycle. Adult autumn migrants (gynoparae) are monophagous, colonizing spindle (Euonymus europaeus), whereas polyphagous summer winged aphids (alate virginoparae) are associated with a variety of herbaceous plants, including broad bean (Vicia faba). When aphids from a single clone were given access to a spindle leaf and a bean seedling in choice tests, many virginoparae settled and larviposited on both plant species over 24 h. By contrast, gynoparae showed a clear preference for spindle, with 93.5% of settled adults and 98.3% of larvae on this plant species. Close‐up video monitoring showed that gynoparae discriminated beans from spindle within a 5‐min period, whereas virginoparae behaved similarly on both plant species. For gynoparae, the major behavioural difference on the two plants appeared after a brief (epidermal) stylet penetration, with many insects taking flight within a few seconds of stylet withdrawal from bean. Factors detected during stylet insertion by gynoparae must therefore inhibit take‐off on spindle. Electrical recording experiments showed that aphids often punctured a cell membrane during brief probes on both plant species, and intracellular stylet activities always included a waveform associated with ingestion. When gynoparae puncture spindle cells their behaviour is probably modified by intracellular metabolites detected via gustation of ingested epidermal cell sap. These cues may inhibit the take‐off reflex which otherwise follows probing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号