首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188318篇
  免费   150333篇
  国内免费   35444篇
  2021年   6606篇
  2020年   4976篇
  2019年   7712篇
  2018年   7207篇
  2017年   5720篇
  2016年   7460篇
  2015年   9959篇
  2014年   11472篇
  2013年   11888篇
  2012年   14107篇
  2011年   13283篇
  2010年   10529篇
  2009年   14624篇
  2008年   9945篇
  2007年   9332篇
  2006年   7627篇
  2005年   6583篇
  2004年   6085篇
  2003年   5142篇
  2002年   5557篇
  2001年   6432篇
  2000年   4070篇
  1999年   8585篇
  1998年   9812篇
  1997年   10028篇
  1996年   9251篇
  1995年   9461篇
  1994年   8848篇
  1993年   8300篇
  1992年   8623篇
  1991年   8520篇
  1990年   9131篇
  1989年   8334篇
  1988年   7545篇
  1987年   6598篇
  1986年   6084篇
  1985年   5500篇
  1984年   4177篇
  1983年   3403篇
  1982年   3651篇
  1981年   3296篇
  1980年   3223篇
  1979年   3340篇
  1978年   3030篇
  1977年   2949篇
  1976年   2767篇
  1974年   2526篇
  1973年   2517篇
  1972年   2869篇
  1971年   2632篇
排序方式: 共有10000条查询结果,搜索用时 37 毫秒
81.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
82.
83.
The ability of a series of DNA-damaging agents to induce homologous intrachromosomal recombination between duplicated genes in the chromosome of mouse cells was investigated. The target cells were the thymidine kinase-deficient mouse L-cell strain 333M, which contains a single integrated copy of a plasmid with two herpes simplex virus thymidine kinase (Htk) genes, each containing an 8-base-pair XhoI linker inserted at a unique site. Expression of a functional Htk enzyme requires a productive recombinational event between the two nonfunctional genes. The spontaneous rate of recombination in this strain is 3 per 10(6) cells per generation. The agents tested represent physical carcinogens (UV and ionizing radiation), a simple alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine), an alkylating cross-linking agent (mitomycin C), and a reactive metabolite of a polycyclic aromatic hydrocarbon ((+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene [BPDE] ). The background frequency of tk+ recombinants in the untreated population averaged 18 X 10(-6) +/- 5 X 10(-6). Ionizing radiation had little or no effect on recombination; exposure to mitomycin C, N-methyl-N'-nitro-N-nitrosoguanidine, BPDE, or UV, at doses that lowered the survival to between 90 and 10% of the control, caused a dose-dependent increase in frequency of recombinants, reaching 50 X 10(-6) to 100 X 10(-6). No tk+ cells could be generated with a control cell line that contained only one mutant copy of the Htk gene. Molecular hybridization analysis showed that 85 to 90% of the tk+ recombinants retained the Htk gene duplication, consistent with nonreciprocal transfer of wild-type genetic information, gene conversion. In the rest, only a single copy of the Htk gene remained, reflecting a single reciprocal exchange within a chromatid or a single unequal exchange between sister chromatids. Each recombinant tested contained an XhoI-resistant (wild-type) Htk gene.  相似文献   
84.
Saccharomyces cerevisiae CDC8 gene and its product.   总被引:14,自引:6,他引:8  
  相似文献   
85.
86.
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) plays an important role in metabolic regulation in plant. To understand the molecular mechanism of amino acids and carbohydrate metabolism in Malus hupehensis Rehd. var. pinyiensis Jiang (Pingyi Tiancha, PYTC), a full-length cDNA clone encoding homologue of SnRK1 was isolated from PYTC by Rapid Amplification of cDNA Ends (RACE). The clone, designated as MhSnRK1, contains 2063 nucleotides with an open reading frame of 1548 nucleotides. The deduced 515 amino acids showed high identities with other plant SnRK1 genes. Quantitative real-time PCR analysis revealed this gene was expressed in roots, stems and leaves. Exposing seedlings to nitrate caused and initial decrease in expression of the MhSnRK1 gene in roots, leaves and stems in short term. Ectopic expression of MhSnRK1 in tomato mainly resulted in higher starch content in leaf and red-ripening fruit than wild-type plants. This result supports the hypothesis that overexpression of SnRK1 causes the accumulation of starch in plant cells. All the results suggest that MhSnRK1 may play important roles in carbohydrate and amino acid metabolisms.  相似文献   
87.
88.
Extracts from the stems and leaves of Pitavia punctata Mol. were examined. The neutral fraction yielded β-sitosterol, daucosterin, quercetin, avicularin, and the previously undescribed quercetin 3-rhamnosylarabinoside. Braylin was co-extracted with the basic constituents, dictamnine, skimmianine and γ-fagarine. Acid hydrolysis of the leaves yielded cyanidin and delphinidin.  相似文献   
89.
Cell suspensions of mouse plasma-cell tumour MOPC 315 secreting predominantly IgA (immunoglobulin A) monomer and dimer were incubated with radioactive leucine, mannose, galactose and fucose for various periods of time. The amounts of secreted and intracellular immunoglobulins were measured by co-precipitation with specific antibody, and the molecular species present were assessed by electrophoresis in polyacrylamide gels. Analysis of the secreted myeloma protein demonstrated that monomer and dimer IgA molecules are identical with respect to carbohydrate composition and rate of secretion. Within the cell, the myeloma protein is almost entirely accounted for by monomer units which either leave the cell as such or are polymerized with the addition of J chain close to the time of secretion. The results support the concept of a stepwise addition of carbohydrate residues to IgA immunoglobulin during the process of secretion. Similar patterns of carbohydrate assembly were found for the monomer or dimer molecules. Mannose residues are added at an early stage, whereas fucose is added close to the time of secretion. Galactose is also added early, but some may also be incorporated at a later stage. Control of IgA polymerization is considered unlikely to reflect regulation at the level of carbohydrate addition, and it is suggested that the critical controlling factor is the J chain.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号