首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151篇
  免费   73篇
  2023年   5篇
  2022年   4篇
  2021年   13篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   10篇
  2016年   26篇
  2015年   38篇
  2014年   60篇
  2013年   62篇
  2012年   88篇
  2011年   117篇
  2010年   98篇
  2009年   59篇
  2008年   59篇
  2007年   61篇
  2006年   68篇
  2005年   56篇
  2004年   44篇
  2003年   41篇
  2002年   45篇
  2001年   9篇
  2000年   12篇
  1999年   20篇
  1998年   19篇
  1997年   9篇
  1996年   13篇
  1995年   18篇
  1994年   18篇
  1993年   8篇
  1992年   8篇
  1991年   8篇
  1990年   8篇
  1989年   7篇
  1988年   11篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   12篇
  1983年   8篇
  1982年   11篇
  1981年   10篇
  1980年   5篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1969年   2篇
排序方式: 共有1224条查询结果,搜索用时 250 毫秒
71.
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we purified complex III of Seculamonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria-like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits between 6 and 46 kDa in size, including two large "core" subunits and the three "respiratory" subunits. The molecular mass of the S. ecuadoriensis bc(1) complex is slightly lower than that reported for other eukaryotes, but about 2x as large as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early stage in mitochondrial evolution, prior to the divergence of jakobids. We posit that the recruitment of additional subunits in mitochondrial respiratory complexes is a consequence of the migration of originally alpha-proteobacterial genes to the nucleus.  相似文献   
72.
73.
Potential role for ADAM15 in pathological neovascularization in mice   总被引:11,自引:0,他引:11       下载免费PDF全文
ADAM15 (named for a disintegrin and metalloprotease 15, metargidin) is a membrane-anchored glycoprotein that has been implicated in cell-cell or cell-matrix interactions and in the proteolysis of molecules on the cell surface or extracellular matrix. To characterize the potential roles of ADAM15 during development and in adult mice, we analyzed its expression pattern by mRNA in situ hybridization and generated mice carrying a targeted deletion of ADAM15 (adam15(-/-) mice). A high level of expression of ADAM15 was found in vascular cells, the endocardium, hypertrophic cells in developing bone, and specific areas of the hippocampus and cerebellum. However, despite the pronounced expression of ADAM15 in these tissues, no major developmental defects or pathological phenotypes were evident in adam15(-/-) mice. The elevated levels of ADAM15 in endothelial cells prompted an evaluation of its role in neovascularization. In a mouse model for retinopathy of prematurity, adam15(-/-) mice had a major reduction in neovascularization compared to wild-type controls. Furthermore, the size of tumors resulting from implanted B16F0 mouse melanoma cells was significantly smaller in adam15(-/-) mice than in wild-type controls. Since ADAM15 does not appear to be required for developmental angiogenesis or for adult homeostasis, it may represent a novel target for the design of inhibitors of pathological neovascularization.  相似文献   
74.
75.
Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.  相似文献   
76.
The genomic structure of the filamin gene paralogues FLNB and FLNC was determined and related to FLNA. FLNB consists of 45 exons and 44 introns and spans approximately 80 kb of genomic DNA. FLNC is divided into 48 exons and 47 introns and covers approximately 29.5 kb of genomic DNA. A previously unknown intron was found in FLNA. The comparison of all three filamin gene paralogues revealed a highly conserved exon-intron structure with significant differences in the exons 32 of all paralogues encoding the hinge I region, as well as the insertion of a novel exon 40A in FLNC only. Gene organization does not correlate with the domain structures of the respective proteins. To improve candidate gene cloning approaches, FLNB was precisely mapped at 3p14 in an interval of 0.81 cM between WI3771 and WI6691 and FLNC at 7q32 in an interval of 2.07 cM between D7S530 and D7S649.  相似文献   
77.
Sphingomonas herbicidovorans MH was able to completely degrade both enantiomers of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid], with preferential degradation of the (S) enantiomer over the (R) enantiomer. These results are in agreement with the recently reported enantioselective degradation of mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propanoic acid] by this bacterium (C. Zipper, K. Nickel, W. Angst, and H.-P. E. Kohler, Appl. Environ. Microbiol. 62:4318–4322, 1996). Uptake of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D (2,4-dichlorophenoxyacetic acid) was inducible. Initial uptake rates of cells grown on the respective substrate showed substrate saturation kinetics with apparent affinity constants (Kt) of 108, 93, and 117 μM and maximal velocities (Vmax) of 19, 10, and 21 nmol min−1 mg of protein−1 for (R)-dichlorprop, (S)-dichlorprop, and 2,4-D, respectively. Transport of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D was completely inhibited by various uncouplers and by nigericin but was only marginally inhibited by valinomycin and by the ATPase inhibitor N,N′-dicyclohexylcarbodiimine. Experiments on the substrate specificity of the putative transport systems revealed that (R)-dichlorprop uptake was inhibited by (R)-mecoprop but not by (S)-mecoprop, (S)-dichlorprop, or 2,4-D. On the other hand, the (S)-dichlorprop transport was inhibited by (S)-mecoprop but not by (R)-mecoprop, (R)-dichlorprop, or 2,4-D. These results provide evidence that the first step in the degradation of dichlorprop, mecoprop, and 2,4-D by S. herbicidovorans is active transport and that three inducible, proton gradient-driven uptake systems exist: one for (R)-dichlorprop and (R)-mecoprop, another for (S)-dichlorprop and (S)-mecoprop, and a third for 2,4-D.  相似文献   
78.
This work shows that the ribC wild-type gene product has both flavokinase and flavin adenine dinucleotide synthetase (FAD-synthetase) activities. RibC plays an essential role in the flavin metabolism of Bacillus subtilis, as growth of a ribC deletion mutant strain was dependent on exogenous supply of FMN and the presence of a heterologous FAD-synthetase gene in its chromosome. Upon cultivation with growth-limiting amounts of FMN, this ribC deletion mutant strain overproduced riboflavin, while with elevated amounts of FMN in the culture medium, no riboflavin overproduction was observed. In a B. subtilis ribC820 mutant strain, the corresponding ribC820 gene product has reduced flavokinase/FAD-synthetase activity. In this strain, riboflavin overproduction was also repressed by exogenous FMN but not by riboflavin. Thus, flavin nucleotides, but not riboflavin, have an effector function for regulation of riboflavin biosynthesis in B. subtilis, and RibC seemingly is not directly involved in the riboflavin regulatory system. The mutation ribC820 leads to deregulation of riboflavin biosynthesis in B. subtilis, most likely by preventing the accumulation of the effector molecule FMN or FAD.  相似文献   
79.
Weak alignment of solute molecules with the magnetic field can be achieved in a dilute liquid crystalline medium, consisting of an aqueous mixture of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC). For a certain range of molar ratios, DMPC and DHPC can form large, disc-shaped particles, commonly referred to as bicelles (Sanders and Schwonek, 1992), which cooperatively align in the magnetic field and induce a small degree of alignment on asymmetrically shaped solute molecules. As a result, dipolar couplings between pairs of 1H, 13C or 15N nuclei are no longer averaged to zero by rotational diffusion and they can be readily measured, providing valuable structural information. The stability of these liquid crystals and the degree of alignment of the solute molecules depend strongly on experimental variables such as the DMPC:DHPC ratio and concentration, the preparation protocol of the DMPC/DHPC mixtures, as well as salt, temperature, and pH. The lower temperature limit for which the liquid crystalline phase is stable can be reduced to 20 °C by using a ternary mixture of DHPC, DMPC, and 1-myristoyl-2-myristoleoyl-sn-glycero-3-phosphocholine, or a binary mixture of DHPC and ditridecanoyl-phosphatidylcholine. These issues are discussed, with an emphasis on the use of the medium for obtaining weak alignment of biological macromolecules.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号