首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   13篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   8篇
  2019年   9篇
  2018年   11篇
  2017年   7篇
  2016年   11篇
  2015年   22篇
  2014年   11篇
  2013年   23篇
  2012年   20篇
  2011年   17篇
  2010年   14篇
  2009年   8篇
  2008年   8篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1993年   3篇
  1992年   4篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1961年   1篇
排序方式: 共有270条查询结果,搜索用时 46 毫秒
21.
Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson''s disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP''s main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df = 10−6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10−7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication = 0.59, PReplication = 10−3; ORPooled = 0.51, PPooled = 7×10−8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10−3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10−13). Imputation revealed a block of SNPs that achieved P2df<5×10−8 in GWAIS, and OR = 0.41, P = 3×10−8 in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients.  相似文献   
22.
A mathematical matrix model was formulated to investigate the response of Daphnia obtusa population dynamics to the changes in the water chemistry of Lake Orta before and after the liming operation. Model parameters were estimated from experimental laboratory data. Model analysis showed that water chemistry changes induced by liming affected mainly egg survival and predicted the highest population growth at pH␣6. Whereas increased egg mortality heavily inhibits population growth rate, the model still predicts a long term tendency of the population to increase in number. However, both before and after the liming operation due to high food availability in the laboratory, egg production was higher under all experimental conditions than in the field. When food limitation is accounted for and more realistic, field based estimates of egg production are used, the model predicts the extinction of D. obtusa population in the lake. This suggests that the effects of water chemistry changes on egg mortality had a critical role in the disappearance of D. obtusa from Lake Orta and may even adequately explain the extinction of this population.  相似文献   
23.
24.
Identifying and predicting the structural characteristics of novel repeats throughout the genome can lend insight into biological function. Specific repeats are believed to have biological significance as a function of their distribution patterns. We have developed 'GenomeMark,' a computer program that detects and statistically analyzes candidate repeats. Specifically, 'GenomeMark' identifies the periodic distribution of unique words, calculating their chi2 and Z-score values. Using 'GenomeMark,' we identified novel sequence words present in tandem throughout genomes. We found that these sequences have remarkable spacer sequence distributions and many were genome specific, validating the genome signature theory. Further analysis confirmed that many of these sequences have a specific biological function. The program is available from the authors upon request and is freely available for non-commercial and academic entities.  相似文献   
25.
The influence of dose rate on expression time, cell survival and mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was evaluated in human G(0) peripheral blood lymphocytes exposed in vitro to gamma rays at low (0.0014 Gy/min) and high (0.85 Gy/min) dose rates. A cloning assay performed on different days of postirradiation incubation indicated an 8-day maximum expression period for the induction of HPRT mutants at both high and low dose rates. Cell survival increased markedly with decreasing dose rate, yielding D(0) values of 3.04 Gy and 1.3 Gy at low and high dose rates, respectively. The D(0) of 3.04 Gy obtained at low dose rate could be attributed to the repair of sublethal DNA damage taking place during prolonged exposure to low-LET radiation. Regression analysis of the mutant frequency yielded slopes of 12.35 x 10(-6) and 3.66 x 10(-6) mutants per gray at high and low dose rate, respectively. A dose and dose-rate effectiveness factor of 3.4 indicated a marked dose-rate effect on the induced HPRT mutant frequency. The results indicate that information obtained from in vitro measurements of dose-rate effects in human G(0) lymphocytes may be a useful parameter for risk estimation in radiation protection.  相似文献   
26.
27.
28.
Combined factor deficiency (F5F8D) is a rare autosomal recessive disorder caused by mutations in the LMAN1 or MCFD2 genes. It has been proposed that this pathogenic process occurs via a multi-step pathway involving metal loss, EF-hand-Ca21 dissociation and assembly of misfolded MCFD2-LMAN1 complex. Here, we have investigated the solution conformations of the MCFD2((D81H,V100D)) protein mutant through extensive molecular dynamics (MD) simulations. The V100D, one of the many MCFD2 mutations known to be associated to F5F8D, is difficult to be reconciled with the pathway model because it is located far from the metal sites and the MCFD2/LMAN1 interface. Consequently, an inspection of all the steps involved in D81H/V100D MCFD2 misfolding is expected to provide hints in the understanding of the molecular basis of the disease. A comparison with parallel studies carried out for the Wild-Type (WT) MCFD2 pointed out that the mutation decreases the affinity of the protein for the Ca21 ion. Multiple explicit solvents MD simulations (50_ns) performed on the two proteins revealed that in the WT protein, stable H-bond network and compact hydrophobic core region are created thus confirming a pivotal role of this region in driving the biophysical properties of the entire protein. In fact it is shown that the V100D mutation, although located far away the EF-hand domain, may induce subtle modification in the structural core of MCFD2 leading to the loosening of metal binding and to the formation of metastable intermediate states along the unfolding pathway. The native-like hydrophobic cluster formed near the V100 residue in the wild-type protein is disrupted by the negatively charged Asparagine residue. Furthermore, the presence of the D81H mutation in the EF-1 hand domain may also increase the protein unfolding rate and consequently prevent the formation of the MCFD2-LMAN1 complex. The detailed structural insights obtained from our large-scale simulations complement the clinical features and offer useful insights into the mechanism behind MCFD2 protein misfolding.  相似文献   
29.
Caenorhabditis elegans and human HRG-1-related proteins are conserved, membrane-bound permeases that bind and translocate heme in metazoan cells via a currently uncharacterized mechanism. Here, we show that cellular import of heme by HRG-1-related proteins from worms and humans requires strategically located amino acids that are topologically conserved across species. We exploit a heme synthesis-defective Saccharomyces cerevisiae mutant to model the heme auxotrophy of C. elegans and demonstrate that, under heme-deplete conditions, the endosomal CeHRG-1 requires both a specific histidine in the predicted second transmembrane domain (TMD2) and the FARKY motif in the C terminus tail for heme transport. By contrast, the plasma membrane CeHRG-4 transports heme by utilizing a histidine in the exoplasmic (E2) loop and the FARKY motif. Optimal activity under heme-limiting conditions, however, requires histidine in the E2 loop of CeHRG-1 and tyrosine in TMD2 of CeHRG-4. An analogous system exists in humans, because mutation of the synonymous histidine in TMD2 of hHRG-1 eliminates heme transport activity, implying an evolutionary conserved heme transport mechanism that predates vertebrate origins. Our results support a model in which heme is translocated across membranes facilitated by conserved amino acids positioned on the exoplasmic, cytoplasmic, and transmembrane regions of HRG-1-related proteins. These findings may provide a framework for understanding the structural basis of heme transport in eukaryotes and human parasites, which rely on host heme for survival.  相似文献   
30.
The type III intermediate filaments (IFs) are essential cytoskeletal elements of mechanosignal transduction and serve critical roles in tissue repair. Mice genetically deficient for the IF protein vimentin (Vim(-/-)) have impaired wound healing from deficits in myofibroblast development. We report a surprising finding made in Vim(-/-) mice that corneas are protected from fibrosis and instead promote regenerative healing after traumatic alkali injury. This reparative phenotype in Vim(-/-) corneas is strikingly recapitulated by the pharmacological agent withaferin A (WFA), a small molecule that binds to vimentin and down-regulates its injury-induced expression. Attenuation of corneal fibrosis by WFA is mediated by down-regulation of ubiquitin-conjugating E3 ligase Skp2 and up-regulation of cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1). In cell culture models, WFA exerts G(2)/M cell cycle arrest in a p27(Kip1)- and Skp2-dependent manner. Finally, by developing a highly sensitive imaging method to measure corneal opacity, we identify a novel role for desmin overexpression in corneal haze. We demonstrate that desmin down-regulation by WFA via targeting the conserved WFA-ligand binding site shared among type III IFs promotes further improvement of corneal transparency without affecting cyclin-dependent kinase inhibitor levels in Vim(-/-) mice. This dissociates a direct role for desmin in corneal cell proliferation. Taken together, our findings illuminate a previously unappreciated pathogenic role for type III IF overexpression in corneal fibrotic conditions and also validate WFA as a powerful drug lead toward anti-fibrosis therapeutic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号