首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   5篇
  2021年   2篇
  2019年   4篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
51.

Purpose

Determination of mitral flow is an important aspect in assessment of cardiac function. Traditionally, mitral flow is measured by Doppler echocardiography which suffers from several challenges, particularly related to the direction and the spatial inhomogeneity of flow. These challenges are especially prominent in rodents. The purpose of this study was to establish a cardiovascular magnetic resonance (CMR) protocol for evaluation of three-directional mitral flow in a rodent model of cardiac disease.

Materials and Methods

Three-directional mitral flow were evaluated by phase contrast CMR (PC-CMR) in rats with aortic banding (AB) (N = 7) and sham-operated controls (N = 7). Peak mitral flow and deceleration rate from PC-CMR was compared to conventional Doppler echocardiography. The accuracy of PC-CMR was investigated by comparison of spatiotemporally integrated mitral flow with left ventricular stroke volume assessed by cine CMR.

Results

PC-CMR portrayed the spatial distribution of mitral flow and flow direction in the atrioventricular plane throughout diastole. Both PC-CMR and echocardiography demonstrated increased peak mitral flow velocity and higher deceleration rate in AB compared to sham. Comparison with cine CMR revealed that PC-CMR measured mitral flow with excellent accuracy. Echocardiography presented significantly lower values of flow compared to PC-CMR.

Conclusions

For the first time, we show that PC-CMR offers accurate evaluation of three-directional mitral blood flow in rodents. The method successfully detects alterations in the mitral flow pattern in response to cardiac disease and provides novel insight into the characteristics of mitral flow.  相似文献   
52.
We have determined the complete nucleotide sequence of the two nonallelic adult beta-globin genes of the C57BL/10 mouse. These genes, designated beta s and beta t, show a sequence similarity of 99.6% over the region bordered by the translational start and stop codons. Both beta s and beta t encode functional polypeptide chains that are identical. A comparison of the C57BL/10 beta-globin haplotype, Hbbs, with that of the BALB/c mouse, Hbbd, suggests that the two haplotypes have distinct evolutionary histories. The two adult beta-globin genes of the Hbbd haplotype, beta dmaj and beta dmin, are 16% divergent at the nucleotide level and encode distinct polypeptides that are synthesized in differing amounts. Our analysis indicates that a gene correction mechanism has been operating on the Hbbs chromosome to keep beta s and beta t evolving in concert, whereas on the Hbbd chromosome, beta dmin has diverged considerably from beta dmaj. We suggest that gene conversion is responsible for the maintained similarity of the Hbbs genes. Furthermore, we attribute the divergence of the Hbbd genes in part to the absence of a region of simple-sequence DNA within the large intervening sequence of beta dmin. We propose that this region of DNA plays a role in facilitating gene conversion. The deletion of this area in beta dmin introduced a block of nonhomology between the beta dmaj-beta dmin gene pair and thus may have inhibited further gene correction within the Hbbd haplotype.   相似文献   
53.
Repeated epilation (Er) is a radiation-induced, autosomal, incomplete dominant mutation in mice which is expressed in heterozygotes but is lethal in the homozygous condition. Many effects of the mutation occur in skin: the epidermis in Er/Er mice is adhesive (oral and nasal orifices fuse, limbs adhere to the body wall), hyperplastic, and fails to undergo terminal differentiation. Skin from fetal +/+, Er/+ and Er/Er mice at ages pre- and postkeratinization examined by light, scanning, and transmission electron microscopy showed marked abnormalities in tissue architecture, differentiation, and cell structure; light and dark basal epidermal cells were separated by wide intercellular spaces, joined by few desmosomes, and contained phagolysomes. The numbers of spinous, granular, and superficial layers were highly variable within any given region and among various regions of the body. In some areas, 2-8 layers of granular cells, containing large or diminutive keratohyalin granules, extended to the epidermal surface; in others, the granular layers were covered by several layers of partially keratinized or nonkeratinized cells. In rare instances, a single or small group of cornified cells was present among the granular layers but was not associated with the epidermal surface. Both the granular and nonkeratinized/partially keratinized upper epidermal layers Er/Er skin gave positive immunofluorescence with antiserum to the histidine-rich, basic protein, filaggrin. Proteins in epidermal extracts from +/+, Er/+ and Er/Er mice were separated and identified by radio- and immunolabeling techniques. The Er/Er extract was missing a 26.5- kdalton protein and had an altered ratio of bands in the keratin region. The 26.5-kdalton band was histidine-rich and cross-reacted with the antiserum to rat filaggrin. Several high molecular weight bands present in both Er/Er and +/+ extracts also reacted with the antiserum. These are presumed to be the precursors of filaggrin and to account for the immunofluorescence om Er/Er epidermis even though the product protein is absent. The morphologic and biochemical data indicated that the genetic defect has a general and profound influence on epidermal differentiation, including alteration of two proteins (filaggrin and keratin) important in normal terminal differentiation, tissue architecture, and cytology. Identification of epidermal abnormalities at early stages of development (prekeratinization) and defective structure of other tissues and gross anatomy suggest that the mutation is responsible for a defect in same regulatory step important in many processes of differentiation and development.  相似文献   
54.
J Hamming  M Gruber    G AB 《Nucleic acids research》1979,7(4):1019-1033
The interaction between RNA polymerase and the E. coli ribosomal (r) RNA promoter(s) of the rrnE operon has been studied by the filter-binding method. The extent of complex formation between RNA polymerase and rrnE promoter(s) is salt-dependent; ppGpp specifically inhibits interaction of RNA polymerase with the rrnE promoter(s). A tentative model is proposed for the molecular events in the early steps of rRNA initiation: a transition of the primarily formed, labile RNA polymerase-rRNA promoter complex to a more stable form is the determining step. This step is salt-sensitive; ppGpp acts on this "isomerization".  相似文献   
55.
In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.The novel swine origin 2009 influenza A (H1N1) virus was identified in April 2009, and it is currently causing the first influenza pandemic of the 21st century. The virus is a completely new reassortant virus (8, 38), and the majority of the human population does not have preexisting immunity against it. The case fatality rate of the current pandemic virus infection is still unclear, but it is estimated to be somewhat higher than that of seasonal influenza virus infections (8). In most cases, the pandemic 2009 A (H1N1) virus causes an uncomplicated respiratory tract illness with symptoms similar to those caused by seasonal influenza viruses. However, gastrointestinal symptoms atypical to seasonal influenza have been detected in a significant proportion of cases (4, 7, 35).The pandemic 2009 (H1N1) influenza A virus originates from a swine influenza A virus strain. It underwent multiple reassortment events in pigs and then transferred into the human population (8, 38). The new virus has gene segments from the North American triple-reassortant and Eurasian swine H1N1 viruses (8, 38). Sequence analysis of this new pandemic virus revealed that hemagglutinin (HA), NP, and NS gene segments are derived from the classical swine viruses, PB1 from human H3N2, and PB2 and PA from avian viruses within the triple-reassortant virus (8). In addition, the NA and M segments originate from the Eurasian swine virus lineage. The pandemic 2009 (H1N1) virus is genetically and antigenically distinct from previous seasonal human influenza A (H1N1) viruses. Thus, the current seasonal influenza vaccines are likely to give little, if any, protection against pandemic 2009 A (H1N1) virus infection (12, 14). However, some evidence indicates that people born early in the 20th century have cross-neutralizing antibodies against the pandemic 2009 A (H1N1) viruses (12, 14).At present, relatively little is known about the pathogenesis and transmission of the pandemic 2009 A (H1N1) virus in humans. Studies with ferrets revealed that the pandemic virus replicated better than seasonal H1N1 viruses in the respiratory tracts of the animals. This suggests that the virus is more pathogenic in ferrets than seasonal influenza viruses (19, 24). The respiratory tract is the primary infection site of all mammalian influenza viruses, and, indeed, the specific glycan receptors on the apical surface of the upper respiratory tract have been reported to bind HA of the 2009 A (H1N1) virus (19). In human lung tissue binding assays, 2009 A (H1N1) HA showed a glycan binding pattern similar to that of the HA from the pandemic 1918 A (H1N1) virus though its affinity to α2,6 glycans was much lower than that of the 1918 virus HA. The lower glycan binding properties of the pandemic 2009 A (H1N1) virus seemed to correlate with less-efficient transmission in ferrets compared to seasonal H1N1 viruses (19). According to another study with ferrets, the transmission of the pandemic 2009 A (H1N1) virus via respiratory droplets was as efficient as that of a seasonal A (H1N1) virus (24). It is clear that, besides experimental infections in animal models, analyses of the characters and pathogenesis of the pandemic 2009 A (H1N1) virus infection in humans are urgently needed.In the present study, we have focused on analyzing innate immune responses in primary human dendritic cells (DCs) and macrophages in response to an infection with one of the Finnish isolates of the pandemic 2009 A (H1N1) virus. DCs and macrophages reside beneath the epithelium of the respiratory organs, and these cells are thus potential targets for influenza viruses. From the epithelial cells influenza viruses spread in DCs and macrophages, which coordinate the development of an effective innate immune response against the virus (22, 34, 41). During influenza virus infection, DCs and macrophages secrete antiviral cytokines such as interferons (IFNs) and tumor necrosis factor alpha (TNF-α) (3, 13, 26). Moreover, DCs and macrophages activate virus-destroying NK cells and T cells with the cytokines they secrete and via direct cell-to-cell contacts (9, 29, 33, 37). Here we show that the pandemic (H1N1) virus infects and replicates very well in human monocyte-derived DCs and macrophages. The pandemic virus as well as two recent seasonal H1N1 viruses induced a relatively weak innate immune response in these cells, as evidenced by a poor expression of antiviral and proinflammatory cytokine genes. However, like seasonal influenza A viruses, the pandemic 2009 (H1N1) virus was extremely sensitive to the antiviral actions of type I IFNs (IFN-α/β). Interestingly, the pandemic 2009 (H1N1) virus was even more sensitive to antiviral IFN-λ3 than a seasonal A (H1N1) virus. Thus, IFNs may provide us with an additional means to combat severe pandemic influenza virus infections, especially if viral resistance against neuraminidase (NA) inhibitors begins to emerge.  相似文献   
56.
We recently reported that bile salts play a role in the regulation of mucin secretion by cultured dog gallbladder epithelial cells. In this study we have examined whether bile salts also influence mucin secretion by the human epithelial colon cell line LS174T. Solutions of bile salts were applied to monolayers of LS174T cells. Mucin secretion was quantified by measuring the secretion of [3H]GlcNAc labeled glycoproteins. Both unconjugated bile salts as well as taurine conjugated bile salts stimulated mucin secretion by the colon cells in a dose-dependent fashion. Hydrophobic bile salts were more potent stimulators than hydrophilic bile salts. Free (unconjugated) bile salts were more stimulatory compared with their taurine conjugated counterparts. Stimulation of mucin secretion by LS174T cells was found to occur at much lower bile salt concentrations than in the experiments with the dog gallbladder epithelial cells. The protein kinase C activators PMA and PDB had no stimulatory effect on mucin secretion. We conclude that mucin secretion by the human colon epithelial cell line LS174T is regulated by bile salts. We suggest that regulation of mucin secretion by bile salts might be a common mechanism, by which different epithelia protect themselves against the detergent action of bile salts, to which they are exposed throughout the gastrointestinal tract.   相似文献   
57.
While the potential for intermittent hydrostatic pressure to promote cartilaginous matrix synthesis is well established, its potential to influence chondroinduction remains poorly understood. This study examined the effects of relatively short- and long-duration cyclic hydrostatic compression on the chondroinduction of C3H/10T1/2 murine embryonic fibroblasts by recombinant human bone morphogenetic protein-2 (rhBMP-2). Cells were seeded at high density into round bottom wells of a 96-well plate and supplemented with 25 ng/ml rhBMP-2. Experimental cultures were subjected to either 1,800 cycles/day or 7,200 cycles/day of 1 Hz sinusoidal hydrostatic compression to 5 MPa (applied 10 min on/10 min off) for 3 days. Non-pressurized control and experimental cultures were maintained in static culture for an additional 5 days. Cultures were then analyzed for alcian blue staining intensity, DNA and sulfated glycosaminoglycan (sGAG) content, and for the rate of collagen synthesis. Whereas cultures subjected to 1,800 pressure cycles exhibited no significant differences (statistical or qualitative) compared to controls, those subjected to 7,200 cycles stained more intensely with alcian blue, contained nearly twice as much sGAG, and displayed twice the rate of collagen synthesis as non-pressurized controls. This study demonstrates the potential for cyclic hydrostatic compression to stimulate chondrogenic differentiation of the C3H/10T1/2 cell line in a duration-dependent manner.  相似文献   
58.
59.

Aims

In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model.

Methods and Results

PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered.

Conclusion

PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.  相似文献   
60.
PURPOSE: To develop different thrombus analogues, with mechanical properties similar to those of human fibrinous thrombus, for in-vitro aneurysm sac pressure studies. METHODS: Using dynamic mechanical analysis we determined the E-modulus (/E(*)/) at 0.8, 1.0, 1.5 and 3.9 Hz of ten different human fibrinous thrombus samples. We also determined loss and storage modulus to quantify the visco-elastic properties. For comparison, we measured the E-modulus (|E(*)|), loss and storage modulus of gelatin, Novalyse ST8, ST14 and ST20 with and without contrast agent. RESULTS: Mean E-modulus of the thrombus samples (SD) at 0.8, 1.0, 1.5 and 3.9 Hz was 39 (16), 37 (15), 37 (15) and 38 (14)kPa, respectively. Median (SD) storage and loss modulus were 35 (12) and 8 (4)kPa, respectively. Median (SD) tandelta was 0.25 (0.06). The E-modulus of gelatin, Novalyse ST8, ST14 and ST20 was 4, 27, 48 and 60 kPa, respectively. The E-modulus of Novalyse ST8, ST14 and ST20 mixed with contrast agent was 18, 23 and 33 kPa, respectively. Median (SD) storage, loss modulus and tan delta of the six Novalyse samples were 30 (15), 3 (1) and 0.087 (0.04), respectively. CONCLUSION: All the thrombus analogues, except gelatin, had an E-modulus in the range of human fibrinous thrombi. Novalyse samples are validated thrombus analogues for in-vitro aneurysm sac pressure studies. Gelatin is not appropriate to simulate fibrinous thrombus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号