首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2420篇
  免费   164篇
  国内免费   1篇
  2023年   6篇
  2022年   17篇
  2021年   46篇
  2020年   25篇
  2019年   41篇
  2018年   43篇
  2017年   48篇
  2016年   60篇
  2015年   110篇
  2014年   141篇
  2013年   151篇
  2012年   224篇
  2011年   194篇
  2010年   138篇
  2009年   103篇
  2008年   148篇
  2007年   116篇
  2006年   131篇
  2005年   137篇
  2004年   121篇
  2003年   106篇
  2002年   77篇
  2001年   56篇
  2000年   79篇
  1999年   44篇
  1998年   20篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   17篇
  1992年   19篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   12篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   9篇
  1982年   10篇
  1981年   3篇
  1980年   8篇
  1979年   12篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1971年   2篇
  1969年   2篇
排序方式: 共有2585条查询结果,搜索用时 218 毫秒
31.
Summary A mutant strain lacking in activity of L-cysteine desulfhydrase, a L-cysteine-decomposing enzyme, was screened after UV-treatment ofPseudomonas sp. CU6. The properties of the two strains, original and mutant, were compared on the basis of parameter values estimated from kinetic simulations of the enzymatic formation of L-cysteine from D,L-ATC. Both strains suffered from product inhibition, though inhibition was less for the mutant strain.  相似文献   
32.
An intracellular form of phospholipase A2 was purified about 47,500-fold to near homogeneity from bovine platelets 100,000 x g supernatant by sequential use of column chromatographies on Heparin-Sepharose, DEAE-Sephacel, Butyl-Toyopearl, Sephacryl S-300, DEAE-5PW HPLC, TSK G 3000 SW HPLC and Mono Q FPLC. The final preparation showed a single band on SDS-polyacrylamide gel, and its molecular mass was estimated to be approximately 100,000 daltons. The purified PLA2 showed maximal activity at alkaline pH(pH 9.0-10.0) and considerable activity at 0.3-1.0 microM calcium concentration. It hydrolyzed phosphatidylcholine containing arachidonate at sn-2 position with high selectivity in comparison to linoleate.  相似文献   
33.
34.
A two-stage continuous system in combination with a temperature-sensitive expression system were used as model systems to maximize the productivity of a cloned gene and minimize the problem associated with the plasmid instability for a high-expression recombinant. In order to optimize the two-stage fermentation process, the effects of such operational variables as temperature and dilution rate on productivity of cloned gene were studied using the model systems and a recombinant, Escherichia coli K12 DeltaH1 Deltatrp/pPLc23trp A1. When the expression of cloned gene is induced by raising the operating temperature above 38 degrees C, a significant decrease in the colony-forming-units (CFU) of the plasmid-harboring cell was observed, and the decrease was related to the product concentration. In order to describe this phenomenon, a new kinetic parameter related to the metabolic stress (metabolic stress factor) was introduced. It is defined as the ratio of the rate of change of pheno-type from colony-forming to non-colony-forming cells to the product accumulation per unit cell mass. At a fixed temperature of 40 degrees C, the varying dilution rate D in the range of 0.35-0.90 h(-1) did not affect the metabolic stress factor significantly. At a fixed dilution rate of D = 0.35 h(-1), this factor remained practically constant up to 41 degrees C but increased rapidly beyond 41 degrees C. The effects of temperature and dilution rate in the second stage on the specific production rate were also studied while maintaining the apparent specific growth rate (mu(2) (app)) of the second stage constant at or near mu(2) (app) = 0.26 h(-1). Under a constant dilution rate, D(2) = 0.35 h(-1), the maximum specific production rate obtained was about q(p, max) = 38 units TrpA/mg cell/h at 41 degrees C. At a constant temperature, T(2) = 40 degrees C, specific production rate increased with decreasing dilution rate with in the dilution rate range of D(2) = 0.35-0.90 h(-1). Based on the results of our study, the optimal operating conditions found were dilution rate D(2) = 0.35 h(-1) and operating temperature T(2) = 41 degrees C at the apparent specific growth rate of 0.26 h(-1). Under the optimal operating conditions, about threefold increase in productivity was achieved compared to the best batch culture result. In addition, the fermentation period could be extended for more than 100 h.  相似文献   
35.
By employing a two-stage continuous-culture system, some of the more important physiological parameters involved in cellulose biosynthesis have been evaluated with an ultimate objective of designing an optimally controlled cellulose process. The two-stage continuous-culture system was run for a period of 1350 hr with Trichoderma reesei strain MCG-77. The temperature and pH were controlled at 32°C and pH 4.5 for the first stage (growth) and 28°C and pH 3.5 for the second stage (enzyme production). Lactose was the only carbon source for the both stages. The ratio of specific uptake rate of carbon to that of nitrogen, Q(C)/Q(N), that supported good cell growth ranged from 11 to 15, and the ratio for maximum specific enzyme productivity ranged from 5 to 13. The maintenance coefficients determined for oxygen, MO, and for carbon source, MC, are 0.85 mmol O2/g biomass/hr and 0.14 mmol hexose/g biomass/hr, respectively. The yield constants determined are: YX/O = 32.3 g biomass/mol O2, YX/C = 1.1 g biomass/g C or YX/C = 0.44 g biomass/g hexose, YX/N = 12.5 g biomass/g nitrogen for the cell growth stage, and YX/N = 16.6 g biomass/g nitrogen for the enzyme production stage. Enzyme was produced only in the second stage. Volumetric and specific enzyme productivities obtained were 90 IU/liter/hr and 8 IU/g biomass/hr, respectively. The maximum specific enzyme productivity observed was 14.8 IU/g biomass/hr. The optimal dilution rate in the second stage that corresponded to the maximum enzyme productivity was 0.026 ~ 0.028 hr?1, and the specific growth rate in the second stage that supported maximum specific enzyme productivity was equal to or slightly less than zero.  相似文献   
36.
Recently, 1-β-D-arabinofuranosylcytosine-5′-diphosphate-DL-1,2-dipalmitin (VIa) was reported to inhibit the growth of L51784 cells in mice and of human colon carcinoma HCT-15 cells, also in mice. This paper describes the synthesis of a single diastereomer by conversion of 1-β-D-arabinofuranosylcytosine 5′-monophosphate (II) to the nucleoside 5′-phosphomorpholidate (III), followed by reaction with L-α-dipalmitoylphosphatidic acid (IV) to give 1-β-D-arabinofuranosylcytosine-5′-diphosphate-L-1,2-dipalmitin (V) in good yield. The separation of the product is described and its characterization by chromatography, elemental analysis, and spectroscopic methods. The lipophilic nature of V renders it insoluble in aqueous media and a method of sample preparation utilizing sonication techniques is described which provides a clear solution suitable for biological evaluation. In addition, the ability of V to inhibit the invitro growth of L1210 cells and of mouse myeloma MPC 11 cells is desscribed and compared with 1-β-D-arabinofuranosylcytosine (I) and other lipophilic prodrugs of I.  相似文献   
37.
A new class of layered cathodes, Li[NixCoyB1?x?y]O2 (NCB), is synthesized. The proposed NCB cathodes have a unique microstructure in which elongated primary particles are tightly packed into spherical secondary particles. The cathodes also exhibit a strong crystallographic texture in which the ab layer planes are aligned along the radial direction, facilitating Li migration. The microstructure, which effectively suppresses the formation of microcracks, improves the cycling stability of the NCB cathodes. The NCB cathode with 1.5 mol% B delivers a discharge capacity of 234 mAh g?1 at 0.1 C and retains 91.2% of its initial capacity after 100 cycles (compared to values of 229 mAh g?1 at 0.1 C and 78.8% for pristine Li[Ni0.9Co0.1]O2). This study shows the importance of controlling the microstructure to obtain the required cycling stability, especially for Ni‐rich layered cathodes, where the main cause of capacity fading is related to mechanical strain in their charged state.  相似文献   
38.
Interactions between pathogenic microorganisms and their hosts are varied and complex, encompassing open-field scale interactions to interactions at the molecular level. The capacity of plant pathogenic bacteria and fungi to cause diseases in human and animal systems was, until recently, considered of minor importance. However, recent evidence suggests that animal and human infections caused by plant pathogenic fungi, bacteria and viruses may have critical impacts on human and animal health and safety. This review analyses previous research on plant pathogens as causal factors of animal illness. In addition, a case study involving disruption of type III effector-mediated phagocytosis in a human cell line upon infection with an opportunistic phytopathogen, Pseudomonas syringae pv. tomato, is discussed. Further knowledge regarding the molecular interactions between plant pathogens and human and animal hosts is needed to understand the extent of disease incidence and determine mechanisms for disease prevention.  相似文献   
39.
Alzheimer's disease (AD) is an age‐related neurodegenerative disease. The most common pathological hallmarks are amyloid plaques and neurofibrillary tangles in the brain. In the brains of patients with AD, pathological tau is abnormally accumulated causing neuronal loss, synaptic dysfunction, and cognitive decline. We found a histone deacetylase 6 (HDAC6) inhibitor, CKD‐504, changed the tau interactome dramatically to degrade pathological tau not only in AD animal model (ADLPAPT) brains containing both amyloid plaques and neurofibrillary tangles but also in AD patient‐derived brain organoids. Acetylated tau recruited chaperone proteins such as Hsp40, Hsp70, and Hsp110, and this complex bound to novel tau E3 ligases including UBE2O and RNF14. This complex degraded pathological tau through proteasomal pathway. We also identified the responsible acetylation sites on tau. These dramatic tau‐interactome changes may result in tau degradation, leading to the recovery of synaptic pathology and cognitive decline in the ADLPAPT mice.  相似文献   
40.
Oh  Byeong Seob  Kim  Ji-Sun  Ryu  Seoung Woo  Yu  Seung Yeob  Lee  Jung-Sook  Park  Seung-Hwan  Kang  Se Won  Lee  Jiyoung  Lee  Mi-Kyung  Lee  Kang Hyun  Jung  Won Yong  Jung  Hyunjung  Hur  Tai-Young  Kim  Hyeun Bum  Kim  Jae-Kyung  Lee  Ju-Hoon  Jeong  Jae-Ho  Lee  Ju Huck 《Antonie van Leeuwenhoek》2021,114(12):2091-2099

An obligately anaerobic, Gram-stain-positive, non-motile, non-spore-forming and rod-shaped strain AGMB00832T was isolated from swine faeces. Phylogenetic analysis based on the 16S rRNA gene, together with the housekeeping genes, gyrB and rpoD, revealed that strain AGMB00832T belonged to the genus Faecalicatena and was most closely related to Faecalicatena orotica KCTC 15331T. In biochemical analysis, strain AGMB00832T was shown to be negative for catalase, oxidase and urease. Furthermore, the isolate was positive for β-glucosidase, β-glucuronidase, glutamic acid decarboxylase, proline arylamidase, acid phosphatase and naphthol-AS-BI-phosphohydrolase. The major cellular fatty acids (>?10%) of the isolate were C14:0, C16:0 and C18:1ω11t DMA. Based on the whole genome sequence analysis, the DNA G?+?C content of strain AGMB00832T was 44.2 mol%, and the genome size and numbers of rRNA and tRNA genes were 5,175,159 bp, 11 and 53, respectively. The average nucleotide identity and digital DNA–DNA hybridization values between strain AGMB00832T and related strains were ≤?77.4 and 22.5%, respectively. Furthermore, the genome analysis revealed the presence of genes for alkaline shock protein 23 and cation/proton antiporters, which may facilitate growth of strain AGMB00832T in alkaline culture condition. On the basis of polyphasic taxonomic approach, strain AGMB00832T represents a novel species within the genus Faecalicatena, for which the name Faecalicatena faecalis sp. nov. is proposed. The type strain is AGMB00832T (=?KCTC 15946T?=?NBRC 114613T).

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号