首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   11篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2015年   8篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2005年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
31.
Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of the mitochondrial enzyme, methylmalonyl‐CoA mutase (MCM). The main treatments for MMA patients are dietary restriction of propiogenic amino acids and carnitine supplementation. Liver or combined liver/kidney transplantation has been used to treat those with the most severe clinical manifestations. Thus, therapies are necessary to help improve quality of life and prevent liver, renal and neurological complications. Previously, we successfully used the TAT‐MTS‐Protein approach for replacing a number of mitochondrial‐mutated proteins. In this targeted system, TAT, an 11 a.a peptide, which rapidly and efficiently can cross biological membranes, is fused to a mitochondrial targeting sequence (MTS), followed by the mitochondrial mature protein which sends the protein into the mitochondria. In the mitochondria, the TAT‐MTS is cleaved off and the native protein integrates into its natural complexes and is fully functional. In this study, we used heterologous MTSs of human, nuclear‐encoded mitochondrial proteins, to target the human MCM protein into the mitochondria. All fusion proteins reached the mitochondria and successfully underwent processing. Treatment of MMA patient fibroblasts with these fusion proteins restored mitochondrial activity such as ATP production, mitochondrial membrane potential and oxygen consumption, indicating the importance of mitochondrial function in this disease. Treatment with the fusion proteins enhanced cell viability and most importantly reduced MMA levels. Treatment also enhanced albumin and urea secretion in a CRISPR/Cas9‐engineered HepG2 MUT (‐/‐) liver cell line. Therefore, we suggest using this TAT‐MTS‐Protein approach for the treatment of MMA.  相似文献   
32.
Manganese toxicity to chlorophyll synthesis in tobacco callus   总被引:2,自引:0,他引:2  
Tobacco (Nicotiana tabacum) pith explants were grown on manganese containing medium. At moderate concentration (10 millimolar), manganese selectively inhibited chlorophyll synthesis, resulting initially in growth of white callus. Several weeks later the white callus turned brown due to the accumulation of a pigment identified as protoporphyrin IX by its elution profile using high performance liquid chromatography, by its absorption spectrum, and by its fluorescence properties. At a concentration of 100 millimolar manganese the pigment accumulated without growth of the explant.  相似文献   
33.
Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe′, buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe′. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe′ and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe′ at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe′ but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism.  相似文献   
34.
Although a complete pathway of lipoic acid metabolism has been established in Escherichia coli, lipoic acid metabolism in other bacteria is more complex and incompletely understood. Listeria monocytogenes has been shown to utilize two lipoate-protein ligases for lipoic acid scavenging, whereas only one of the ligases can function in utilization of host-derived lipoic acid-modified peptides. We report that lipoic acid scavenging requires not only ligation of lipoic acid but also a lipoyl relay pathway in which an amidotransferase transfers lipoyl groups to the enzyme complexes that require the cofactor for activity. In addition, we provide evidence for a new lipoamidase activity that could allow utilization of lipoyl peptides by lipoate-protein ligase. These data support a model of an expanded, three-enzyme pathway for lipoic acid scavenging that seems widespread in the Firmicutes phylum of bacteria.  相似文献   
35.
There is emerging evidence supporting the use vision training, including light board training tools, as a concussion baseline and neuro-diagnostic tool and potentially as a supportive component to concussion prevention strategies. This paper is focused on providing detailed methods for select vision training tools and reporting normative data for comparison when vision training is a part of a sports management program. The overall program includes standard vision training methods including tachistoscope, Brock’s string, and strobe glasses, as well as specialized light board training algorithms. Stereopsis is measured as a means to monitor vision training affects. In addition, quantitative results for vision training methods as well as baseline and post-testing *A and Reaction Test measures with progressive scores are reported. Collegiate athletes consistently improve after six weeks of training in their stereopsis, *A and Reaction Test scores. When vision training is initiated as a team wide exercise, the incidence of concussion decreases in players who participate in training compared to players who do not receive the vision training. Vision training produces functional and performance changes that, when monitored, can be used to assess the success of the vision training and can be initiated as part of a sports medical intervention for concussion prevention.  相似文献   
36.
Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.  相似文献   
37.
Contact‐dependent growth inhibition (CDI) is a phenomenon in which Gram‐negative bacteria use the toxic C‐terminus of a large surface‐exposed exoprotein to inhibit the growth of susceptible bacteria upon cell–cell contact. Little is known about when and where bacteria express the genes encoding CDI system proteins and how these systems contribute to the survival of bacteria in their natural niche. Here we establish that, in addition to mediating interbacterial competition, the Burkholderia thailandensis CDI system exoprotein BcpA is required for biofilm development. We also provide evidence that the catalytic activity of BcpA and extracellular DNA are required for the characteristic biofilm pillars to form. We show using a bcpAgfp fusion that within the biofilm, expression of the CDI system‐encoding genes is below the limit of detection for the majority of bacteria and only a subset of cells express the genes strongly at any given time. Analysis of a strain constitutively expressing the genes indicates that native expression is critical for biofilm architecture. Although CDI systems have so far only been demonstrated to be involved in interbacterial competition, constitutive production of the system's immunity protein in the entire bacterial population did not alter biofilm formation, indicating a CDI‐independent role for BcpA in this process. We propose, therefore, that bacteria may use CDI proteins in cooperative behaviours, like building biofilm communities, and in competitive behaviours that prevent non‐self bacteria from entering the community.  相似文献   
38.
39.
The drug concentration inside multidrug-resistant cells is the outcome of competition between the active export of drugs by drug efflux pumps, such as P-glycoprotein (Pgp), and the passive permeation of drugs across the plasma membrane. Thus, reversal of multidrug resistance (MDR) can occur either by inhibition of the efflux pumps or by acceleration of the drug permeation. Among the hundreds of established modulators of Pgp-mediated MDR, there are numerous surface-active agents potentially capable of accelerating drug transbilayer movement. The aim of the present study was to determine whether these agents modulate MDR by interfering with the active efflux of drugs or by allowing for accelerated passive permeation across the plasma membrane. Whereas Pluronic P85, Tween-20, Triton X-100 and Cremophor EL modulated MDR by inhibition of Pgp-mediated efflux, with no appreciable effect on transbilayer movement of drugs, the anesthetics chloroform, benzyl alcohol, diethyl ether and propofol modulated MDR by accelerating transbilayer movement of drugs, with no concomitant inhibition of Pgp-mediated efflux. At higher concentrations than those required for modulation, the anesthetics accelerated the passive permeation to such an extent that it was not possible to estimate Pgp activity. The capacity of the surface-active agents to accelerate passive drug transbilayer movement was not correlated with their fluidizing characteristics, measured as fluorescence anisotropy of 1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene. This compound is located among the headgroups of the phospholipids and does not reflect the fluidity in the lipid core of the membranes where the limiting step of drug permeation, namely drug flip-flop, occurs.  相似文献   
40.
Iron is a member of a small group of nutrients that limits aquatic primary production. Mechanisms for utilizing iron have to be efficient and adapted according to the ecological niche. In respect to iron acquisition cyanobacteria, prokaryotic oxygen evolving photosynthetic organisms can be divided into siderophore‐ and non‐siderophore‐producing strains. The results presented in this paper suggest that the situation is far more complex. To understand the bioavailability of different iron substrates and the advantages of various uptake strategies, we examined iron uptake mechanisms in the siderophore‐producing cyanobacterium Anabaena sp. PCC 7120. Comparison of the uptake of iron complexed with exogenous (desferrioxamine B, DFB) or to self‐secreted (schizokinen) siderophores by Anabaena sp. revealed that uptake of the endogenous produced siderophore complexed to iron is more efficient. In addition, Anabaena sp. is able to take up dissolved, ferric iron hydroxide species (Fe′) via a reductive mechanism. Thus, Anabaena sp. exhibits both, siderophore‐ and non‐siderophore‐mediated iron uptake. While assimilation of Fe′ and FeDFB are not induced by iron starvation, FeSchizokinen uptake rates increase with increasing iron starvation. Consequently, we suggest that Fe′ reduction and uptake is advantageous for low‐density cultures, while at higher densities siderophore uptake is preferred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号