首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14201篇
  免费   1651篇
  国内免费   4343篇
  2024年   41篇
  2023年   301篇
  2022年   468篇
  2021年   777篇
  2020年   605篇
  2019年   712篇
  2018年   565篇
  2017年   508篇
  2016年   593篇
  2015年   845篇
  2014年   1086篇
  2013年   1088篇
  2012年   1336篇
  2011年   1404篇
  2010年   1067篇
  2009年   971篇
  2008年   1146篇
  2007年   1058篇
  2006年   913篇
  2005年   847篇
  2004年   713篇
  2003年   635篇
  2002年   562篇
  2001年   286篇
  2000年   278篇
  1999年   196篇
  1998年   151篇
  1997年   100篇
  1996年   89篇
  1995年   68篇
  1994年   67篇
  1993年   43篇
  1992年   57篇
  1991年   45篇
  1990年   37篇
  1989年   42篇
  1988年   30篇
  1987年   30篇
  1986年   36篇
  1985年   45篇
  1984年   21篇
  1983年   25篇
  1982年   35篇
  1981年   30篇
  1980年   22篇
  1979年   16篇
  1978年   21篇
  1977年   16篇
  1976年   22篇
  1974年   19篇
排序方式: 共有10000条查询结果,搜索用时 411 毫秒
971.
核磁共振检测大鼠早期癫痫源性脑损伤的动态发展特征   总被引:10,自引:4,他引:6  
Zang Y  Han D  Yang YH  Liu ML  Zou ZY 《生理学报》2002,54(3):201-207
为探讨癫痫源性脑损伤形成早期不同脑区病理改变和行为发作的动态发展特征 ,本研究对大鼠右背侧海马 (hippocampus,HPC)施加慢性强直电刺激 (6 0Hz,2s,0 .4~ 0 .6mA)诱发癫痫发作 ,1次 /d。每天记录大鼠原发性湿狗样抖动 (wetdogshakes,WEDS)频率 ,分别对大鼠施加电刺激 2、4、6、8和 10d后进行核磁共振成像 (T2 weightedmagneticresonanceimage ,T2 WI)检测 ,并对鼠脑进行了组织学切片鉴定。结果表明 :与空白对照组相比较 ,(1)施加 2d强直电刺激时 ,大鼠双侧背部侧脑室 (lateralventricle,LV)区域呈现对称性T2 WI信号绝对值增加 (n =4,左侧P =0 .0 0 18;右侧P =0 .0 0 10 ) ;施加 6d强直电刺激时 ,大鼠呈现植入电极对侧中、腹部LV区域T2 WI信号值增加 (n =5 ,P =0 .0 0 73;P =0 .0 2 49) ;施加 8d强直电刺激后 ,大鼠仅出现植入电极对侧腹部LV区域T2 WI信号值增加 (n =3,P =0 .0 34 0 ) ;施加 10d强直电刺激后 ,大鼠植入电极同侧腹部LV区域T2 WI信号值增加 (n =4,P =0 .0 10 7) ;(2 )随着强直电刺激天数增加 ,大鼠原发性WEDS频率高峰期出现在第 4个刺激日 ,然后WEDS频率下降 ,与T2 WI信号强度增加之间呈高度负相关关系 (相关系数r =- 0 .987,P <0 .0 2 ) ;(3)组织学切片鉴定 :T2 WI检测LV信号异  相似文献   
972.
Plasma protein binding can be an effective means of improving the pharmacokinetic properties of otherwise short lived molecules. Using peptide phage display, we identified a series of peptides having the core sequence DICLPRWGCLW that specifically bind serum albumin from multiple species with high affinity. These peptides bind to albumin with 1:1 stoichiometry at a site distinct from known small molecule binding sites. Using surface plasmon resonance, the dissociation equilibrium constant of peptide SA21 (Ac-RLIEDICLPRWGCLWEDD-NH(2)) was determined to be 266 +/- 8, 320 +/- 22, and 467 +/- 47 nm for rat, rabbit, and human albumin, respectively. SA21 has an unusually long half-life of 2.3 h when injected by intravenous bolus into rabbits. A related sequence, fused to the anti-tissue factor Fab of D3H44 (Presta, L., Sims, P., Meng, Y. G., Moran, P., Bullens, S., Bunting, S., Schoenfeld, J., Lowe, D., Lai, J., Rancatore, P., Iverson, M., Lim, A., Chisholm, V., Kelley, R. F., Riederer, M., and Kirchhofer, D. (2001) Thromb. Haemost. 85, 379-389), enabled the Fab to bind albumin with similar affinity to that of SA21 while retaining the ability of the Fab to bind tissue factor. This interaction with albumin resulted in reduced in vivo clearance of 25- and 58-fold in mice and rabbits, respectively, when compared with the wild-type D3H44 Fab. The half-life was extended 37-fold to 32.4 h in rabbits and 26-fold to 10.4 h in mice, achieving 25-43% of the albumin half-life in these animals. These half-lives exceed those of a Fab'(2) and are comparable with those seen for polyethylene glycol-conjugated Fab molecules, immunoadhesins, and albumin fusions, suggesting a novel and generic method for improving the pharmacokinetic properties of rapidly cleared proteins.  相似文献   
973.
974.
Tubulin folding cofactors control the availability of tubulin subunits and microtubule stability in eukaryotic cells. Recent work on Arabidopsis mutants has provided a new experimental system for understanding the cellular functions of tubulin folding cofactors.  相似文献   
975.
Toxoplasma gondii is a common protozoan parasite that causes disease in immunocompromised humans. Equipped with a wide array of experimental tools, T. gondii has rapidly developed as a model parasite for genetic studies. The population structure of T. gondii is highly clonal, consisting of three distinct lineages that differ dramatically in virulence. Acute virulence is probably mediated by the genetic differences that distinguish strain types. We have utilized a combination of genetic approaches to investigate the acute virulence of toxoplasmosis using the mouse model. These studies reveal the surprising finding that pathogenicity is due to the over-stimulation of normally protective immune responses. Classical genetic linkage mapping studies indicate that genes that mediate acute virulence are linked to chromosome VII in the parasite. To increase the resolution of genetic mapping studies, single-nucleotide polymorphisms are being developed based on an extensive database of expressed sequence tags (ESTs) from T. gondii. Separately, DNA microarray studies are being used to examine the expression of parasite and host genes during infection. Collectively, these approaches should improve current understanding of virulence and pathogenicity in toxoplasmosis.  相似文献   
976.
We studied how the introduction of an additional ATP-consuming reaction affects the metabolic fluxes in Lactococcus lactis. Genes encoding the hydrolytic part of the F(1) domain of the membrane-bound (F(1)F(0)) H(+)-ATPase were expressed from a range of synthetic constitutive promoters. Expression of the genes encoding F(1)-ATPase was found to decrease the intracellular energy level and resulted in a decrease in the growth rate. The yield of biomass also decreased, which showed that the incorporated F(1)-ATPase activity caused glycolysis to be uncoupled from biomass production. The increase in ATPase activity did not shift metabolism from homolactic to mixed-acid fermentation, which indicated that a low energy state is not the signal for such a change. The effect of uncoupled ATPase activity on the glycolytic flux depended on the growth conditions. The uncoupling stimulated the glycolytic flux threefold in nongrowing cells resuspended in buffer, but in steadily growing cells no increase in flux was observed. The latter result shows that glycolysis occurs close to its maximal capacity and indicates that control of the glycolytic flux under these conditions resides in the glycolytic reactions or in sugar transport.  相似文献   
977.
We had previously reported that systemic overexpression of the alpha(1B)-adrenergic receptor (AR) in a transgenic mouse induced a neurodegenerative disease that resembled the parkinsonian-like syndrome called multiple system atrophy (MSA). We now report that our mouse model has cytoplasmic inclusion bodies that colocalize with oligodendrocytes and neurons, are positive for alpha-synuclein and ubiquitin, and therefore may be classified as a synucleinopathy. Alpha-synuclein monomers as well as multimers were present in brain extracts from both normal and transgenic mice. However, similar to human MSA and other synucleinopathies, transgenic mice showed an increase in abnormal aggregated forms of alpha-synuclein, which also increased its nitrated content with age. However, the same extracts displayed decreased phosphorylation of alpha-synuclein. Other traits particular to MSA such as Purkinje cell loss in the cerebellum and degeneration of the intermediolateral cell columns of the spinal cord also exist in our mouse model but differences still exist between them. Interestingly, long-term therapy with the alpha(1)-AR antagonist, terazosin, resulted in protection against the symptomatic as well as the neurodegeneration and alpha-synuclein inclusion body formation, suggesting that signaling of the alpha(1B)-AR is the cause of the pathology. We conclude that overexpression of the alpha(1B)-AR can cause a synucleinopathy similar to other parkinsonian syndromes.  相似文献   
978.
Neuroleukin (NLK) is a multifunctional protein involved in neuronal growth and survival, cell motility and differentiation, and glucose metabolism. We report herein that hippocampal expression of NLK and its receptor gp78 is associated with maze learning in rats. First, mRNA levels of NLK and gp78 were significantly increased in hippocampi of male Fischer-344 rats following training in the Stone T-maze and the Morris water maze. Second, a parallel increase was found in hippocampal NLK and gp78 proteins after maze learning. Third, NLK and gp78 mRNA and protein expression in hippocampus was reduced in a group of aged rats that showed more errors during the acquisition of the Stone maze task as compared with young rats. Finally, application of recombinant NLK to hippocampal neurons significantly enhanced glutamate-induced ion currents, functional molecular changes that have been correlated with learning in vivo. Taken together, our results identify a novel association of hippocampal expression of NLK and its receptor gp78 with rat maze learning. Interaction of NLK with gp78 and subsequent signaling may strengthen synaptic mechanisms underlying learning and memory formation.  相似文献   
979.
The dopamine D1 receptor plays a major role in mediating behavioral responses to cocaine administration. The time course for the acquisition and the relative stability for the expression of behavioral responses suggest the involvement of enduring neuroadaptations in response to repeated cocaine exposure. Changes in gene expression through the D1 receptors may accompany and mediate the development of such neuroadaptations to repeated cocaine stimulation. To test this possibility, we systematically compared the expression of the fos and Jun family immediate early genes in the nucleus accumbens and caudoputamen in D1 receptor mutant and wild-type control mice after acute and repeated cocaine exposure. Moreover, we compared the expression of three molecules that have been implicated in mediating the actions of cocaine, Galphaolf, beta-catenin and brain-derived neurotrophic factor, in the two groups of mice before and after cocaine administration. We found that there is a lack of induction of c-Fos, FosB, Fra-2 and JunB by acute cocaine exposure, and of DeltaFosB by repeated cocaine administration in both the NAc and CPu of D1 receptor mutant mice compared with wild-type control mice. Moreover, the D1 receptor is differentially required for mediating Galphaolf, beta-catenin and BDNF expression in the NAc and CPu upon cocaine exposure. These results suggest that the D1 receptor is a critical mediator for cocaine-induced expression of these genes.  相似文献   
980.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号