首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3172篇
  免费   251篇
  2024年   5篇
  2023年   24篇
  2022年   37篇
  2021年   108篇
  2020年   50篇
  2019年   90篇
  2018年   120篇
  2017年   115篇
  2016年   140篇
  2015年   196篇
  2014年   204篇
  2013年   236篇
  2012年   276篇
  2011年   276篇
  2010年   168篇
  2009年   119篇
  2008年   197篇
  2007年   192篇
  2006年   170篇
  2005年   138篇
  2004年   129篇
  2003年   102篇
  2002年   93篇
  2001年   23篇
  2000年   18篇
  1999年   23篇
  1998年   28篇
  1997年   15篇
  1996年   11篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   14篇
  1991年   9篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   8篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   5篇
  1961年   3篇
  1960年   1篇
排序方式: 共有3423条查询结果,搜索用时 156 毫秒
71.
72.
Wet tropical forest trees display a wide range of leaf phenology dynamics. However, the interrelation between deciduousness, water status, and leaf and stem characteristics have been poorly investigated compared with dry forests. We studied wet forest trees to answer the following questions: (1) do water regulation modes (iso/anisohydric behavior) of evergreen species differ from those found in deciduous species? (2) Does leaf water potential (ΨL) influences leaffall and emergence dynamics? (3) Are leaf and stem characteristics consistent across evergreen and deciduous trees? We evaluated vegetative phenology, ΨL, and leaf and stem characteristics of six evergreen and three deciduous species monthly for 2 yr. Species exhibited different leaffall and emergence dynamics, as well as different water regulation modes, independent of their deciduousness. Thus, the relationship between leaf phenology and water regulation behaviors appears to be a species‐specific property rather than a functional group attribute. ΨL had no direct influence on the dynamics of leaffall and/or emergence, indicating that this process is not modulated by water availability alone. Individual groups of evergreen and deciduous species could not be identified using principal component analysis (PCA), but a decoupling was observed in the leaf and stem economics spectra. The lack of an interrelation between deciduousness and iso/anisohydry, as well as the independence of leaf and stem trade‐offs, emphasizes that more systematic measurements of vegetative phenology and ecophysiological characteristics are necessary to advance our knowledge of leaf habit and water regulation behaviors based on the functional traits of wet forest plants.  相似文献   
73.
Analysis of plant–frugivore interactions provides a quantitative framework for integrating community structure and ecosystem function in terms of how the roles and attributes of individual species contribute to network structure and resilience. In this study, we used centrality metrics to rank and detect the most important species in a mutualistic network of fruit‐eating birds and plants in a cloud forest in the Colombian Andes. We identified a central core of ten bird and seven plant species in a network of 135 species that perform dual roles as local hubs and connectors. The birds were mostly large forest frugivores, such as cracids, cotingas, and toucans, which consume fruits of all sizes. The plants were species of intermediate successional stages with small‐ to medium‐sized seeds that persist in mature forest or forest borders (e.g., Miconia, Cecropia, Ficus). We found the resilience of our network depends on super‐generalist species, because their elimination makes the network more prone to disassemble than random extinctions, potentially disrupting seed‐dispersal processes. At our study site, extirpation of large frugivores has already been documented, and if this continues, the network might collapse despite its high diversity. Our results suggest that generalist species play critical roles in ecosystem function and should be incorporated into conservation and monitoring programs.  相似文献   
74.
Plant and Soil - Carbon inputs to soil are mostly site- and management-nonspecific estimates based on measured yield. However, in grasslands most carbon input is root-derived and plant carbon...  相似文献   
75.
The selection of roosts is considered a critical factor to the survival of Noctilio albiventris. Thus, we located and identified N. albiventris day roosts in the Pantanal, near the Miranda River. We identified four species of tree: Banara arguta, Inga vera, Ocotea diospyrifolia and Vitex cymosa. Additional studies are important to understand the impact of specific requirements in the selection of roosts for Noctilio albiventris and to compare the observed patterns in different environments.  相似文献   
76.
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA‐regulated genes are over‐represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA‐related gene expression could be an important component of the Arabidopsis–aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild‐type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1‐1 mutants, which cannot synthesize ABA, and showed a significant preference for wild‐type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1‐1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild‐type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4‐methoxyindol‐3‐ylmethylglucosinolate was more abundant in the aba1‐1 mutant than in wild‐type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids.  相似文献   
77.
78.
79.
The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen‐mediated gene flow from GM crops and non‐GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national‐scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from ‘very low’ (1) to ‘very high’ (5)] was developed, showing medium OPs (3) for GM–native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape‐Vitis vinifera GM–introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile.  相似文献   
80.

Aim

to present the most important aspects of Microdosimetry, a research field in radiation biophysics.

Background

microdosimetry is the branch of radiation biophysics that systematically studies the spatial, temporal and spectral aspects of the stochastic nature of the energy deposition processes in microscopic structures.

Materials and Methods

we briefly review its history, the people, the formalism and the theories and devices that allowed researchers to begin to understand the true nature of radiation action on living matter.

Results and Conclusions

we outline some of its applications, especially to Boron Neutron Capture Therapy, attempting to explain the biological effectiveness of the boron thermal neutron capture reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号