首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   6篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   5篇
  2011年   10篇
  2010年   6篇
  2009年   3篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   6篇
  1993年   1篇
  1992年   1篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
31.
Sensitivity of African biomes to changes in the precipitation regime   总被引:4,自引:0,他引:4  
Aim Africa is identified by the Inter‐governmental Panel on Climate Change (IPCC) as the least studied continent in terms of ecosystem dynamics and climate variability. The aim of this study was (1) to adapt the Lund‐Postdam‐Jena‐GUESS (LPJ‐GUESS) ecological modelling framework to Africa by providing new parameter values for tropical plant functional types (PFT), and (2) to assess the sensitivity of some African biomes to changes in precipitation regime. Location The study area was a representative transect (0–22° N and 7–18° E) through the transition from equatorial evergreen forests to savannas, steppes and desert northwards. The transect showed large latitudinal variation in precipitation (mean rainfall ranged from 50 to 2300 mm year?1). Methods New PFT parameters used to calibrate LPJ‐GUESS were based on modern pollen PFTs and remote sensed leaf area index (LAI). The model was validated using independent modern pollen assemblages, LAI and through comparison with White's modern potential vegetation map. Several scenarios were developed by combining changes in total rainfall amount with variation in the length of the dry season in order to test the sensitivity of African biomes. Results Simulated vegetation compared well to observed data at local and regional scales, in terms of ecosystem functioning (LAI), and composition (pollen and White's vegetation map). The assessment of the sensitivity of biomes to changes in precipitation showed that none of the ecosystems would shift towards a new type under the range of precipitation increases suggested by the IPCC (increases from 5 to 20%). However, deciduous and semi‐deciduous forests may be very sensitive to small reductions in both the amount and seasonality of precipitation. Main conclusions This version of LPJ‐GUESS parameterized for Africa simulated correctly the vegetation present over a wide precipitation gradient. The biome sensitivity assessment showed that, compared with savannas and grasslands, closed canopy forests may be more sensitive to change in precipitation regime due to the synergetic effects of changed rainfall amounts and seasonality on vegetation functioning.  相似文献   
32.
Aim In order to enhance the effectiveness of comparisons between modelled and empirical data for present and past vegetation, it is important to improve the characterization of tropical grass‐dominated biomes reconstructed from fossil tracers. This study presents a method for assigning phytolith assemblages to tropical grass‐dominated biomes, with the objective of offering a new tool for combining pollen and phytolith data in the reconstruction of tropical biomes. Location The West African latitudinal transect studied here extends from 12° N (southern Senegal) to 23° N (southern Mauritania), passing through the Guinean, Sudanian, Sahelian and Saharan bioclimatic zones. Methods Modern phytolith assemblages were extracted from 59 soil surface samples taken throughout the study area and allocated, a priori, to three current biomes: (1) desert C4 grassland, (2) short grass savanna, and (3) tall grass savanna. Five out of nine phytolith types identified were used as predictors in a discriminant analysis (with calibration and validation steps) for assigning phytolith assemblages to biomes. In addition, 74 modern pollen spectra from the West African transect, acquired from the African Pollen Database ( http://medias.obs‐mip.fr/apd ), were processed by the biomization method. This mathematical procedure involves assigning palynological taxa to one or more plant functional types, which represent broad classes of plants. The plant functional types, in turn, are combined to define biomes following a specific set of algorithms and rules. The resulting maps of the phytolith biomes thus derived were compared with maps of pollen biomes and of contemporary ecosystem classes. Results In the calibration and validation steps, 91.5% and up to 83%, respectively, of the phytolith samples were assigned to the correct biome. The short grass savanna and tall grass savanna biomes were assigned with similar accuracy by both the phytolith and pollen biomization methods, but the phytolith method gave substantially superior results for the desert C4 grassland biome, providing seven out of seven correct assignments, compared with just one out of four by pollen biomization. Comparisons between an existing ecosystem map and the maps created from phytolith estimation showed close correspondence for desert C4 grassland, short grass savanna and tall grass savanna, the latter providing correct assignments in 88, 62 and 91% of cases, respectively. Main conclusions The phytolith discriminant analysis method presented here accurately estimates three C4 grass‐dominated biomes that are widespread in West Africa. Complementarities between the phytolith method and pollen biomization are highlighted. Combining complementary phytolith and pollen data would provide more accurate assignments of C4 grass‐dominated biomes than pollen biomization alone.  相似文献   
33.
Aerobic biodegradation of gasoline and its constituents, benzene, toluene and ethylbenzene were studied by an enrichment from soil indigenous microbial population. The enrichment culture completely degraded 16.1–660 mg/l gasoline in 2.5–16 days respectively, without accumulation of any by-products. The kinetics of gasoline as well as benzene, toluene and ethylbenzene biodegradation was investigated with initial gasoline concentrations of 16.1–62.6 mg/l. The maximum specific rates of biodegradation of benzene, toluene and ethylbenzene were 0.12, 0.38 and 0.19 mg mg biomass−1 day−1 respectively. When benzene and toluene were used as sole substrate, the maximum specific rates of their biodegradation were 62.9 and 16.4 times greater than the corresponding values for a mixture (gasoline). The microbial culture was able to mineralize up to 200 mg/l pure toluene and benzene. Maximum mineralization efficiencies of benzene and toluene were 76.7 ± 5.1% and 76.8 ± 1.3% respectively. Self-inhibition and competitive inhibition patterns were observed during the biodegradation of benzene and toluene alone and in the mixture respectively. The observed kinetics was modeled according to Andrews' inhibition model. Received: 6 August 1997 / Received revision: 18 November 1997 / Accepted: 29 November 1997  相似文献   
34.
A laboratory-scale permeable biobarrier exhibited high removal efficiencies of benzene at inlet concentrations of 0.4 to 35.1?mg/L and with a limited supply of dissolved oxygen. The supplied oxygen was less than the demand for a complete aerobic oxidation of benzene. Stainless steel pieces or granulated peat moss were used as packing material for microbial support in the biobarrier. Removal efficiencies ranged from 63.9% to 99.9% in the stainless steel-packed biobarrier and from 70.4% to 97.2% in the peat moss-packed biobarrier, while benzene elimination rate changed from 0.2 to 10.4?mg/L-d and from 0.1 to 3.7?mg/L-d in the two biobarriers, respectively. The consumption of sulfate and the presence of sulfate-reducing bacteria suggested the contribution of anaerobic metabolism in the biodegradation of benzene. The biodegradation of benzene under microaerophilic conditions (defined as dissolved oxygen concentrations <2?mg/L) was demonstrated during independent batch experiments. The maximum specific rate of benzene biodegradation with concentrations of 22.0 to 65.9?mg/L under microaero-philic conditions was 2.6 mg/mg biomass-d.  相似文献   
35.
A miniature fuel cell, using a hydrophobic Teflon(R) membrane, designed to continuously measure dissolved H(2) in nonbiological media, was tested for use in anaerobic digestion conditions. In water, this detector responds quickly and efficiently to variation of hydrogen concentration in the range from 80 to 770 nM The media used, and the metabolites or products found in anaerobic digestion media, i. e. inorganic carbon and phosphate buffers, formate, acetate, and dissolved methane, did not interfere with the signal of the detector cell. Dissolved hydrogen sulfide did not poison the cell but was detected. In spite of the detector's high sensitivity to hydrogen (about 21,000 times higher for hydrogen than for hydrogen sulfide), interferences can occur in media containing high sulfide levels.In a methanogenic reactor, the detector cell response to dissolved hydrogen was fast and reliable with time. The observed values ranged values ranged from 2 to 3.5muM. Dissolved hydrogen concentrations were 40 to 70 times higher than values calculated from measured hydrogen partial pressures and Henry's coefficient, suggesting a limitation of the process in the hydrogen transfer from the liquid to the gaseous phase.  相似文献   
36.
Chronic hyperglycemia has been shown to induce either a lack of response or an increased sensitivity to glucose in pancreatic beta-cells. We reinvestigated this controversial issue in a single experimental model by culturing rat islets for 1 wk in 10 or 30 mmol/l glucose (G10, Controls; or G30, High-glucose islets) before testing the effect of stepwise glucose stimulation from G0.5 to G20 on key beta-cell stimulus-secretion coupling events. Compared with Controls, the glucose sensitivity of High-glucose islets was markedly increased, leading to maximal stimulation of oxidative metabolism and both triggering and amplifying pathways of insulin secretion in G6 rather than G20, hence to loss of glucose effect above G6. This enhanced glucose sensitivity occurred despite an approximately twofold increase in islet uncoupling protein 2 mRNA expression. Besides this increased glucose sensitivity, the maximal glucose stimulation of insulin secretion in High-glucose islets was reduced by approximately 50%, proportionally to the reduction of insulin content. In High-glucose islets, changes in (45)Ca(2+) influx induced by glucose and diazoxide were qualitatively similar but quantitatively smaller than in Control islets and, paradoxically, did not lead to detectable changes in the intracellular Ca(2+) concentration measured by microspectrofluorimetry (fura PE 3). In conclusion, after 1 wk of culture in G30, the loss of glucose stimulation of insulin secretion in the physiological range of glucose concentrations (G5-G10) results from the combination of an increased sensitivity to glucose of both triggering and amplifying pathways of insulin secretion and an approximately 50% reduction in the maximal glucose stimulation of insulin secretion.  相似文献   
37.
The removal of phenol, ortho- (o-) and para- (p-)cresol was studied with two series of UASB reactors using unacclimatized granular sludges bioaugmented with a consortium enriched against these substances. The parameters studied were the amount of inoculum added to the sludges and the method of immobilization of the inoculum. Two methods were used, adsorption to the biomass or encapsulation within calcium alginate beads. In the bioaugmentation by adsorption experiment, and with a 10% inoculum, complete phenol removal was obtained after 36 d, while 178 d were required in the control reactor. For p-cresol, 95% removal was obtained in the bioaugmented reactor on day 48 while 60 d were required to achieve 90% removal in the control reactor. For o-cresol, the removals were only marginally better with the bioaugmented reactors. Tests performed with the reactors biomass under non-limiting substrate concentrations showed that the specific activities of the bioaugmented biomasses were larger than the original biomass for phenol, and p-cresol even after 276 of operations, showing that the inoculum bacteria successfully colonized the sludge granules. Immobilization of the inoculum by encapsulation in calcium alginate beads, was performed with 10% of the inoculum. Results showed that the best activities were obtained when the consortium was encapsulated alone and the beads added to the sludges. This reactor presented excellent activity and the highest removal of the various phenolic compounds a few days after start-up. After 90 d, a high-phenolic compounds removal was still observed, demonstrating the effectiveness of the encapsulation technique for the start-up and maintenance of high-removal activities.  相似文献   
38.
Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The effect of a nonionic surfactant (Tween 80) on 2,4,6-trinitrotoluene (TNT) mineralization by the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767, was investigated in a liquid culture at 20, 50, and 100 mg TNT.L-1. The presence of 1% (w/v) Tween 80, at 20 mg.L-1 TNT, added to a 4-d-old culture, allowed the highest TNT mineralization level, that is 29.3% after 24 d, which is two times more than the control culture, without Tween 80 (13.9%). The mineralization of TNT resumed upon additional Tween 80 supplementation, consequently, 39.0% of the TNT was respired on day 68. Orbital agitation of the fungal culture was found detrimental to TNT mineralization, with or without Tween 80 in the culture medium. The surfactant also stimulated the growth of P. chrysosporium without any notable effect on either the glycerol consumption rate or the extracellular LiP and MnP activity levels. Respirometric assays highlighted some differences between the oxygen uptake rate of the fungal culture supplemented with or without Tween 80.  相似文献   
39.
The potential effects of global changes on forests are of increasing concern. Dendrochronology, which deals with long-term records of tree growth under natural environmental conditions, can be used to evaluate the impact of climatic change on forest productivity. However, assessment of climatic change impacts must be supported by accurate and reliable models of the relationships between climate and tree growth. In this study, a bioclimatic model is used to explore the relationships between tree radial growth and bioclimatic variables closely related to the biological functioning of a tree. This model is at an intermediate level of complexity between purely empirical and process-based models. The method is illustrated with data for 21 Aleppo pine (Pinus halepensis Mill.) stands grown under a Mediterranean climate in south-east France. The results show that Aleppo pine growth is mainly controlled by soil water availability during the growing season. The bioclimatic variable which best expresses the observed inter-annual tree growth variations is the actual evapotranspiration (AET). Four parameters were adjusted to simulate dendrochronological data: the soil water capacity, the wilting point, the minimum temperature for photosynthesis, and the end of the growing season. The bioclimatic model gives better results than the standard response function and provides better insight into the functional processes involved in tree growth. The convincing results obtained by the bioclimatic model as well as the limited numbers of parameters it requires demonstrate the feasibility of using it to explore future climatic change impacts on Aleppo pine forests.  相似文献   
40.
A rapid enrichment approach based on a pentachlorophenol (PCP) feeding strategy which linked the PCP loading rate to methane production was applied to an upflow anaerobic sludge bed reactor inoculated with anaerobic sludge. Due to this strategy, over a 140-day experimental period the PCP volumetric load increased from 2 to 65 mg L(R)(-1) day(-1) with a near zero effluent concentration of PCP. Dechlorination dynamics featured sequential appearance of 3,4,5-chlorophenol, 3,5-chloro- phenol, and 3-chlorophenol in the reactor effluent. Profiling of the reactor population by denaturing gradient gel electrophoresis (DGGE) revealed a correlation between the appearance of dechlorination intermediates and bands on the DGGE profile. Nucleotide sequencing of newly detected 16S rDNA fragments suggested the proliferation of Clostridium and Syntrophobacter/Syntrophomonas spp. in the reactor during PCP degradation. Published by John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号