首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   55篇
  国内免费   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   8篇
  2011年   7篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   12篇
  2005年   7篇
  2004年   8篇
  2003年   5篇
  2002年   11篇
  2001年   13篇
  2000年   4篇
  1999年   10篇
  1998年   10篇
  1997年   10篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   1篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有251条查询结果,搜索用时 250 毫秒
11.
12.
High mobility group 1 (HMG1) protein is an abundant and conserved component of vertebrate nuclei and has been proposed to play a structural role in chromatin organization, possibly similar to that of histone H1. However, a high abundance of HMG1 had also been reported in the cytoplasm and on the surface of mammalian cells. We conclusively show that HMG1 is a nuclear protein, since several different anti-HMG1 antibodies stain the nucleoplasm of cultured cells, and epitope-tagged HMG1 is localized in the nucleus only. The protein is excluded from nucleoli and is not associated to specific nuclear structures but rather appears to be uniformly distributed. HMG1 can bind in vitro to reconstituted core nucleosomes but is not stably associated to chromatin in live cells. At metaphase, HMG1 is detached from condensed chromosomes, contrary to histone H1. During interphase, HMG1 readily diffuses out of nuclei after permeabilization of the nuclear membranes with detergents, whereas histone H1 remains associated to chromatin. These properties exclude a shared function for HMG1 and H1 in differentiated cells, in spite of their similar biochemical properties. HMG1 may be stably associated only to a very minor population of nucleosomes or may interact transiently with nucleosomes during dynamic processes of chromatin remodeling.  相似文献   
13.
14.

Background

Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity.

Methods

The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences.

Results

Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data.

Conclusions

The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.  相似文献   
15.
For initiation of eukaryotic DNA replication the origin recognition complex (ORC) associates with chromatin sites and constitutes a landing pad allowing Cdc6, Cdt1 and MCM proteins to accomplish the pre-replication complex (pre-RC). In S phase, the putative MCM helicase is assumed to move away from the ORC to trigger DNA unwinding. By using the fluorescence-based assays bioluminescence resonance energy transfer (BRET) and bimolecular fluorescence complementation (BiFC) we show in live mammalian cells that one key interaction in pre-RC assembly, the interaction between Orc2 and Orc3, is not restricted to the nucleus but also occurs in the cytoplasm. BRET assays also revealed a direct interaction between Orc2 and nuclear localization signal (NLS)-depleted Orc3. Further, we assessed the subcellular distribution of Orc2 and Orc3 in relation to MCM proteins Mcm3 and Mcm6 as well as to a key protein involved in elongation of DNA replication, proliferating nuclear cell antigen (PCNA). Our findings illustrate the spatial complexity of the elaborated process of DNA replication as well as that the BRET and BiFC techniques are novel tools that could contribute to our understanding of the processes at the very beginning of the duplication of the genome.  相似文献   
16.
Faul T  Staib C  Nanda I  Schmid M  Grummt F 《Chromosoma》1999,108(1):26-31
The Cdc7 kinase is required for the G1/S-phase transition during the cell cycle and plays a direct role in the activation of individual origins of replication in Saccharomyces cerevisiae. Here, we report the identification of a mouse cDNA, MmCdc7, whose product is closely related in sequence to Saccharomyces cerevisiae Cdc7 as well as their human, Xenopus and Schizosaccharomyces pombe homologues. The MmCdc7p contains the conserved subdomains common to all protein-serine/threonine kinases and three kinase inserts that are characteristic of members of the Cdc7 protein family. We have mapped the locus of the MmCdc7 gene to chromosome 5, band 5E. Conservation of structures among members of the Cdc7-related proteins suggests that these proteins play a key role in the regulation of DNA replication during the cell cycle in all eukaryotes. Received: 29 September 1998; in revised form: 14 October 1998 / Accepted: 15 October 1998  相似文献   
17.
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.  相似文献   
18.
19.
TFIIH plays an essential role in RNA polymerase I transcription   总被引:7,自引:0,他引:7  
  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号