首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   908篇
  免费   50篇
  958篇
  2021年   12篇
  2020年   8篇
  2019年   13篇
  2018年   9篇
  2017年   14篇
  2016年   21篇
  2015年   25篇
  2014年   29篇
  2013年   33篇
  2012年   39篇
  2011年   34篇
  2010年   27篇
  2009年   27篇
  2008年   30篇
  2007年   33篇
  2006年   35篇
  2005年   35篇
  2004年   19篇
  2003年   25篇
  2002年   27篇
  2001年   25篇
  2000年   17篇
  1999年   22篇
  1998年   9篇
  1996年   9篇
  1995年   10篇
  1994年   10篇
  1993年   8篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   11篇
  1988年   13篇
  1987年   15篇
  1986年   13篇
  1985年   24篇
  1984年   9篇
  1983年   20篇
  1982年   12篇
  1981年   11篇
  1980年   19篇
  1979年   19篇
  1978年   12篇
  1977年   8篇
  1976年   18篇
  1975年   11篇
  1974年   13篇
  1973年   11篇
  1972年   10篇
  1969年   7篇
排序方式: 共有958条查询结果,搜索用时 0 毫秒
91.
Nitric oxide (NO)-cGMP signaling plays a critical role during the transition of the pulmonary circulation at birth. BAY 41-2272 is a novel NO-independent direct stimulator of soluble guanylate cyclase that causes vasodilation in systemic and local circulations. However, the hemodynamic effects of BAY 41-2272 have not been studied in the perinatal pulmonary circulation. We hypothesized that BAY 41-2272 causes potent and sustained fetal pulmonary vasodilation. We performed surgery on 14 fetal lambs (125-130 days gestation; term = 147 days) and placed catheters in the main pulmonary artery, aorta, and left atrium to measure pressures. An ultrasonic flow transducer was placed on the left pulmonary artery (LPA) to measure blood flow, and a catheter was placed in the LPA for drug infusion. Pulmonary vascular resistance (PVR) was calculated as pulmonary artery pressure minus left atrial pressure divided by LPA blood flow. BAY 41-2272 caused dose-related increases in pulmonary blood flow up to threefold above baseline and reduced PVR by 75% (P < 0.01). Prolonged infusion of BAY 41-2272 caused sustained pulmonary vasodilation throughout the 120-min infusion period. The pulmonary vasodilator effect of BAY 41-2272 was not attenuated by N(omega)-nitro-l-arginine, a NO synthase inhibitor. In addition, compared with sildenafil, a phosphodiesterase 5 inhibitor, the pulmonary vasodilator response to BAY 41-2272 was more prolonged. We conclude that BAY 41-2272 causes potent and sustained fetal pulmonary vasodilation independent of NO release. We speculate that BAY 41-2272 may have therapeutic potential for pulmonary hypertension associated with failure to circulatory adaptation at birth, especially in the setting of impaired NO production.  相似文献   
92.
Several novel series of tetrahydroisoquinoline 1-carboxamides were prepared and shown to be potent growth hormone (GH) secretagogues. Among them, carbamate 12a-E2 displays excellent in vivo activity by increasing plasma GH 10-fold in an anesthetized IV rat model.  相似文献   
93.
Plasma membrane Ca2+ pumps (PMCA pumps) are Ca2+-Mg2+ ATPases that expel Ca2+ from the cytosol to extracellular space and are pivotal to cell survival and function. PMCA pumps are encoded by the genes PMCA1, -2, -3, and -4. Alternative splicing results in a large number of isoforms that differ in their kinetics and activation by calmodulin and protein kinases A and C. Expression by 4 genes and a multifactorial regulation provide redundancy to allow for animal survival despite genetic defects. Heterozygous mice with ablation of any of the PMCA genes survive and only the homozygous mice with PMCA1 ablation are embryolethal. Some PMCA isoforms may also be involved in other cell functions. Biochemical and biophysical studies of PMCA pumps have been limited by their low levels of expression. Delineation of the exact physiological roles of PMCA pumps has been difficult since most cells also express sarco/endoplasmic reticulum Ca2+ pumps and a Na+-Ca2+-exchanger, both of which can lower cytosolic Ca2+. A major limitation in the field has been the lack of specific inhibitors of PMCA pumps. More recently, a class of inhibitors named caloxins have emerged, and these may aid in delineating the roles of PMCA pumps.  相似文献   
94.
Although the reductase domain of cytochrome P450 BM3 (BMR) catalyzes the reduction of cytochrome c and 2,6-dichlorophenolindophenol, we observed a catalytically independent loss of activity. By varying the incubation time for the enzyme prior to reaction initiation, we measured an inactivation rate of 0.22 min(-1). We hypothesized that either an active BMR dimer dissociates to an inactive monomer or BMR undergoes denaturation. We were not able to trap or destabilize a dimer, and BMR inactivation proved to be irreversible. Addition of excess FMN only slightly decreased the rate of inactivation from 0.22 to 0.13 min(-1), indicating inactivation likely does not reflect loss of flavin. When inactivation rates as a function of temperature were fit to the Arrhenius equation, the energy required to inactivate BMR was 9.9 kcal mol(-1)--equivalent to a few hydrogen bonds. The potential instability of BMR under certain conditions raises concerns for the use of BMR as a model or surrogate P450 reductase in other systems.  相似文献   
95.
Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.  相似文献   
96.
OBJECTIVE:: Controlled outcome analysis of mechanical aortic connectors for proximal saphenous vein bypass graft anastomosis is lacking. We report the clinical and angiographic outcome of patients receiving the Symmetry aortic connector (St. Jude Medical, Inc St. Paul, MN, US) within a multicenter, prospective, randomized study. METHODS:: Twenty-five patients at 3 study sites received aortic connectors at the time of coronary artery bypass surgery. Protocol-defined angiographic follow-up was completed in 19 of 25 patients (76%) at time-points up to 14 months postoperatively; 32 connector anastomoses were evaluated in these 19 patients. Beating heart surgery was performed in 17 patients, and 2 were performed with cardiopulmonary bypass. Age was 69.7 ± 8.1 year; all patients were males. RESULTS:: The connector anastomosis patency rate was 15.6% (5/32). There were no deaths during the follow-up period. Four patients (21%) suffered myocardial infarction and 2 additional patients (10.5%) required percutaneous coronary interventions; one of who required 3 percutaneous coronary interventions, the other received one percutaneous coronary intervention. CONCLUSIONS:: In this nonrandomized cohort of patients, occlusion rate with Symmetry connectors was significantly greater than anticipated. Patients who have received these connectors during coronary artery bypass surgery may require closer follow-up and evaluation. While the manufacturer has stopped producing this device, there has been no recall of the product, clinical support remains ongoing, and next generation connectors have now been marketed. Consideration should be given to discontinuation of the clinical use of Symmetry connectors.  相似文献   
97.
We examine what circumstances allow the coexistence of microorganisms following different nutritional strategies, using a mathematical model. This model incorporates four nutritional types commonly found in planktonic ecosystems: (1) heterotrophic bacteria that consume dissolved organic matter and are prey to some of the other organisms; (2) heterotrophic zooflagellates that depend entirely on bacterial prey; (3) phototrophic algae that depend only on light and inorganic nutrients, and (4) mixotrophs that photosynthesize, take up inorganic nutrients, and consume bacterial prey. Mixotrophs are characterized by a parameter representing proportional mixing of phototrophic and heterotrophic nutritional strategies. Varying this parameter, a range of mixotrophic strategies was examined in hypothetical habitats differing in supplies of light, dissolved organic carbon, and dissolved inorganic phosphorous. Mixotrophs expressing a wide range of mixotrophic strategies persisted in model habitats with low phosphorus supply, but only those with a strategy that is mostly autotrophic persisted with high nutrient supply, and then only when light supply was also high. Organisms representing all four nutritional strategies were predicted to coexist in habitats with high phosphorus and light supplies. Coexistence involves predation by zooflagellates and mixotrophs balancing the high competitive ability of bacteria for phosphorus, the partitioning of partially overlapping resources between all populations, and possibly nonequlibrium dynamics. In most habitats, the strategy predicted to maximize the abundance of mixotrophs is to be mostly photosynthetic and supplement nutritional needs by consuming bacteria.  相似文献   
98.
Pesticides are widely used throughout the world in agriculture to protect crops and in public health to control diseases. Nevertheless exposure to pesticides can represent a potential risk to humans. Pesticide manufacturing unit workers are prone to possible occupational pesticide exposure. Therefore, this study was performed to evaluate the genotoxic effect of pesticide exposure in these workers. In the present investigation 54 pesticide workers and an equal number of control subjects were assessed for genome damage in blood lymphocytes utilizing the chromosomal aberration analysis and the buccal epithelial cell by adopting the micronucleus test. The results suggested that pesticide workers had a significantly increased frequency of chromosomal aberrations when compared with controls (mean+/-S.D., 8.43+/-2.36 versus 3.32+/-1.26; P<0.05). Similarly, the pesticides exposed workers showed a significant increase in micronucleated cells compared with controls (1.24+/-0.72 versus 0.32+/-0.26; P<0.05). Analysis of variance revealed that occupational exposure to pesticides had a significant effect on frequency of micronuclei (P<0.05), whereas smoking, age, gender and alcohol consumption had no significant effect on genetic damage (P>0.05). However, no association was found between years of exposure, smoking, age, gender, alcohol consumption and higher levels of genetic damage as assessed by the chromosomal aberration assay (P>0.05). Our findings indicate that occupational exposure to pesticides could cause genome damage in somatic cells.  相似文献   
99.
A zinc ion-sensitive mutant of Mycobacterium smegmatis was isolated. The transposon insertion was located in zitA (MSMEG0750), a gene coding for a cation diffusion facilitator family protein. Zinc ions specifically induced expression of zitA. In silico analysis revealed that environmental and opportunistic pathogenic species contain higher numbers of cation diffusion facilitator genes than do obligate pathogens.  相似文献   
100.
In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT molecules in oligomeric form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号