首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   954篇
  免费   199篇
  2021年   9篇
  2019年   9篇
  2018年   9篇
  2016年   17篇
  2015年   26篇
  2014年   27篇
  2013年   40篇
  2012年   39篇
  2011年   29篇
  2010年   26篇
  2009年   18篇
  2008年   36篇
  2007年   38篇
  2006年   31篇
  2005年   28篇
  2004年   39篇
  2003年   34篇
  2002年   39篇
  2001年   46篇
  2000年   36篇
  1999年   24篇
  1998年   26篇
  1997年   17篇
  1996年   13篇
  1995年   24篇
  1994年   16篇
  1993年   16篇
  1992年   24篇
  1991年   35篇
  1990年   28篇
  1989年   31篇
  1988年   26篇
  1987年   21篇
  1986年   24篇
  1985年   19篇
  1984年   18篇
  1983年   8篇
  1982年   13篇
  1981年   17篇
  1980年   20篇
  1979年   17篇
  1978年   12篇
  1977年   11篇
  1974年   16篇
  1973年   10篇
  1972年   7篇
  1971年   9篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有1153条查询结果,搜索用时 187 毫秒
131.
Lohr M  Im CS  Grossman AR 《Plant physiology》2005,138(1):490-515
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.  相似文献   
132.
BackgroundThe genetic differences among HIV-1 subtypes may be critical to clinical management and drug resistance surveillance as antiretroviral treatment is expanded to regions of the world where diverse non-subtype-B viruses predominate.ConclusionGlobal surveillance and genotypic assessment of drug resistance should focus primarily on the known subtype B drug-resistance mutations.  相似文献   
133.
134.
135.
136.
137.
Many regions of the open, oligotrophic oceans are depleted of nutrients, especially nitrogen and iron. The biogenesis and the functioning of the photosynthetic apparatus may be specialized and tailored to the various marine habitats. In this minireview, we discuss some new findings with respect to photosynthetic processes in the oceans. We focus on findings that suggest that some cyanobacteria may route electrons derived from the splitting of H2O to the reduction of O2 and H+ in a water‐to‐water cycle, and that other cyanobacteria that fix nitrogen during the day are likely missing PSII and enzymes involved in the fixation of inorganic carbon. Both of these proposed “variant” forms of photosynthetic electron flow provide new insights into ways in which marine phytoplankton satisfy their energetic and nutritive requirements.  相似文献   
138.
ICEBs1 is an integrative and conjugative element found in the chromosome of Bacillus subtilis. ICEBs1 encodes functions needed for its excision and transfer to recipient cells. We found that the ICEBs1 gene conE (formerly yddE) is required for conjugation and that conjugative transfer of ICEBs1 requires a conserved ATPase motif of ConE. ConE belongs to the HerA/FtsK superfamily of ATPases, which includes the well-characterized proteins FtsK, SpoIIIE, VirB4, and VirD4. We found that a ConE-GFP (green fluorescent protein) fusion associated with the membrane predominantly at the cell poles in ICEBs1 donor cells. At least one ICEBs1 product likely interacts with ConE to target it to the membrane and cell poles, as ConE-GFP was dispersed throughout the cytoplasm in a strain lacking ICEBs1. We also visualized the subcellular location of ICEBs1. When integrated in the chromosome, ICEBs1 was located near midcell along the length of the cell, a position characteristic of that chromosomal region. Following excision, ICEBs1 was more frequently found near a cell pole. Excision of ICEBs1 also caused altered positioning of at least one component of the replisome. Taken together, our findings indicate that ConE is a critical component of the ICEBs1 conjugation machinery, that conjugative transfer of ICEBs1 from B. subtilis likely initiates at a donor cell pole, and that ICEBs1 affects the subcellular position of the replisome.Integrative and conjugative elements (also known as conjugative transposons) and conjugative plasmids are key elements in horizontal gene transfer and are capable of mediating their own transfer from donor to recipient cells. ICEBs1 is an integrative and conjugative element found in some Bacillus subtilis strains. Where found, ICEBs1 is integrated into the leucine tRNA gene trnS-leu2 (Fig. (Fig.1)1) (7, 14, 21).Open in a separate windowFIG. 1.Genetic map of ICEBs1. conE (formerly yddE), regulatory genes (gray arrows), and genes required for integration, excision, and nicking (hatched arrows) are indicated. The number of transmembrane (TM) segments for each protein predicted by cPSORTdb (46) is indicated below each gene. Other topology programs yield similar but not identical predictions.ICEBs1 gene expression, excision, and potential mating are induced by activation of RecA during the SOS response following DNA damage (7). In addition, ICEBs1 is induced by increased production or activation of the ICEBs1-encoded regulatory protein RapI. Production and activity of RapI are indicative of the presence of potential mating partners that do not contain a copy of ICEBs1 (7). Under inducing conditions, the ICEBs1 repressor ImmR (6) is inactivated by proteolytic cleavage mediated by the antirepressor and protease ImmA (12). Most ICEBs1 genes then become highly expressed (7). One of these genes (xis) encodes an excisionase, which in combination with the element''s integrase causes efficient excision and formation of a double-stranded circle (7, 38). The circular form is nicked at the origin of transfer, oriT, by a DNA relaxase, the product of nicK (39). Under appropriate conditions, ICEBs1 can then be transferred by mating into B. subtilis and other species, including the pathogens Listeria monocytogenes and Bacillus anthracis (7). Once transferred to a recipient, ICEBs1 can be stably integrated into the genome at its attachment site in trnS-leu2 by the ICEBs1-encoded integrase (38).In contrast to what is known about ICEBs1 genes and proteins involved in excision, integration, and gene regulation, less is known about the components that make up gram-positive organisms'' mating machinery, defined as the conjugation proteins involved in DNA transfer (18, 24). The well-characterized mating machinery of gram-negative organisms can serve as a preliminary model (15, 16, 37, 48). Gram-negative organisms'' mating machinery is a type IV secretion system composed of at least eight conserved proteins that span the cell envelope. For example, the conjugation apparatus of the Agrobacterium tumefaciens Ti plasmid (pTi) is composed of 11 proteins (VirB1 through VirB11), including the ATPase VirB4 (16). VirB4 family members interact with several components of their cognate secretion systems and may energize machine assembly and/or substrate transfer (16, 48). The secretion substrate is targeted to the conjugation machinery by a coupling protein. Coupling proteins, such as VirD4 of pTi, interact with a protein attached to the end of the DNA substrate and couple the substrate to other components of the conjugation machinery. Coupling proteins might also energize the translocation of DNA through the machinery. Both VirB4 and VirD4 belong to the large HerA/FtsK superfamily of ATPases (29). Two other characterized members of this superfamily are the chromosome-partitioning proteins FtsK and SpoIIIE (29), which are ATP-dependent DNA pumps (reviewed in reference 2).Some of the proteins encoded by the conjugative elements of gram-positive organisms are homologous to components of the conjugation machinery from gram-negative organisms (1, 9, 14, 29), indicating that some aspects of conjugative DNA transfer may be similar in gram-positive and gram-negative organisms. For example, ConE (formerly YddE) of ICEBs1 has sequence similarities to VirB4 (29). YdcQ may be the ICEBs1-encoded coupling protein, as it is phylogenetically related to other coupling proteins (29, 44). Despite some similarities, the cell envelopes and many of the genes encoding the conjugation machinery are different between gram-positive and gram-negative organisms, indicating that there are likely to be significant structural and mechanistic differences as well.To begin to define the conjugation machinery of ICEBs1 and to understand spatial aspects of conjugation, we examined the function and subcellular location of ConE of ICEBs1. Our results indicate that ConE is likely a crucial ATPase component of the ICEBs1 conjugation machinery. We found that ConE and excised ICEBs1 DNA were located at or near the cell poles. We propose that the conjugation machinery is likely located at the cell poles and that mating might occur from a donor cell pole.  相似文献   
139.
The sulfate ion (SO42−) is transported into plant root cells by SO42− transporters and then mostly reduced to sulfide (S2−). The S2− is then bonded to O-acetylserine through the activity of cysteine synthase (O-acetylserine (thiol)lyase or OASTL) to form cysteine, the first organic molecule of the SO42− assimilation pathway. Here, we show that a root plasma membrane SO42− transporter of Arabidopsis, SULTR1;2, physically interacts with OASTL. The interaction was initially demonstrated using a yeast two-hybrid system and corroborated by both in vivo and in vitro binding assays. The domain of SULTR1;2 shown to be important for association with OASTL is called the STAS domain. This domain is at the C terminus of the transporter and extends from the plasma membrane into the cytoplasm. The functional relevance of the OASTL-STAS interaction was investigated using yeast mutant cells devoid of endogenous SO42− uptake activity but co-expressing SULTR1;2 and OASTL. The analysis of SO42− transport in these cells suggests that the binding of OASTL to the STAS domain in this heterologous system negatively impacts transporter activity. In contrast, the activity of purified OASTL measured in vitro was enhanced by co-incubation with the STAS domain of SULTR1;2 but not with the analogous domain of the SO42− transporter isoform SULTR1;1, even though the SULTR1;1 STAS peptide also interacts with OASTL based on the yeast two-hybrid system and in vitro binding assays. These observations suggest a regulatory model in which interactions between SULTR1;2 and OASTL coordinate internalization of SO42− with the energetic/metabolic state of plant root cells.  相似文献   
140.
Antiphospholipid Ab have been shown to promote thrombosis and fetal loss in the antiphospholipid syndrome (APS). Previously, we found IgG anti-thrombin Ab in some APS patients that could interfere with inactivation of thrombin by antithrombin (AT). Considering that activated coagulation factor X (FXa) is homologous to thrombin in the catalytic domains and is also regulated primarily by AT, we hypothesized that some thrombin-reactive Ab may bind to FXa and interfere with AT inactivation of FXa. To test these hypotheses, we studied reactivity of eight patient-derived monoclonal IgG antiphospholipid Ab with FXa and the presence of IgG anti-FXa Ab in APS patients and investigated the effects of FXa-reactive mAb on AT inactivation of FXa. The results revealed that six of six thrombin-reactive IgG mAb bound to FXa and that the levels of plasma IgG anti-FXa Ab in 38 APS patients were significantly higher than those in 30 normal controls (p < 0.001). When the mean plus 3 SDs of the 30 normal controls was used as the cutoff, 5 of 38 APS patients (13.2%) had IgG anti-FXa Ab. Importantly, three of six FXa-reactive mAb significantly inhibited AT inactivation of FXa. Combined, these results indicate that anti-FXa Ab may contribute to thrombosis by interfering with the anticoagulant function of AT on FXa in some APS patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号