首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1301篇
  免费   169篇
  国内免费   1篇
  2021年   14篇
  2019年   13篇
  2018年   12篇
  2017年   17篇
  2016年   12篇
  2015年   24篇
  2014年   36篇
  2013年   47篇
  2012年   52篇
  2011年   64篇
  2010年   40篇
  2009年   42篇
  2008年   41篇
  2007年   49篇
  2006年   49篇
  2005年   55篇
  2004年   39篇
  2003年   41篇
  2002年   51篇
  2001年   48篇
  2000年   29篇
  1999年   47篇
  1998年   22篇
  1997年   21篇
  1996年   17篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   29篇
  1991年   27篇
  1990年   32篇
  1989年   35篇
  1988年   21篇
  1987年   29篇
  1986年   28篇
  1985年   25篇
  1984年   19篇
  1983年   14篇
  1982年   18篇
  1981年   10篇
  1980年   10篇
  1979年   17篇
  1978年   18篇
  1977年   15篇
  1976年   11篇
  1975年   11篇
  1974年   21篇
  1973年   15篇
  1972年   13篇
  1967年   13篇
排序方式: 共有1471条查询结果,搜索用时 20 毫秒
991.
A covalently closed, circular heteroduplex containing a G-T mismatch and a single hemimethylated d(GATC) site is subject to efficient methyl-directed mismatch correction in Escherichia coli extracts when repair DNA synthesis is severely restricted by limiting the concentration of exogenously supplied deoxyribonucleoside-5'-triphosphates or by supplementing reactions with chain-terminating 2',3'-dideoxynucleoside triphosphates. However, repair under these conditions results in formation of a single-strand gap in the region of the molecule containing the mismatch and the d(GATC) site. These findings indicate that repair DNA synthesis required for methyl-directed correction can initiate in the vicinity of the mispair, and they are most consistent with a repair reaction involving 3'----5' excision (or strand displacement) from the d(GATC) site followed by 5'----3' repair DNA synthesis initiating in the vicinity of the mismatch.  相似文献   
992.
Twenty four plots, each 2.0 m2 in area, were established on St. Augustine loam soil series as field plots and microplots (containing lysimeters) in a completely randomised block design of four treatments (mulched fertilized, unmulched fertilized microplots; mulched fertilized and unmulched fertilized field plots), replicated three times. Labelled (15N) and unlabelled (NH2)2CO fertilizer were applied at rates of 400 kg N ha–1 and CaH2PO4 and KCl were applied at rates of 100 and 150 g ha–1 respectively to the field plots and microplots. Mulch (bagasse) was maintained to a depth of two cm and the plots were kept bare with regular applications of gramoxone.The maximum depth of leaching as measured by diffusion of NO 3 15N in both the dry and wet seasons was 30 cm. The potential for downward movement of water and NO 3 15N was low in the wet season because high intensity rainfall followed high soil moisture contents. Effects of mulching, on the mobility of applied N fertilizers were inconclusive. Infiltration rates were significantly (P=0.25) inversely correlated with soil moisture content, supporting the hypothesis that high intensity rainfall on a saturated soil surface is more likely to result in NO 3 15N dispersion than NO 3 15N leaching.  相似文献   
993.
The phosphatidylinositol (PI)-specific phospholipase C (PLC) of Bacillus cereus was cloned into Escherichia coli by using monoclonal antibody probes raised against the purified protein. The enzyme is specific for hydrolysis of the membrane lipid PI and PI-glycan-containing membrane anchors, which are important structural components of one class of membrane proteins. The protein expressed in E. coli comigrated with B. cereus PI-PLC in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as detected by immunoblotting, and conferred PI-PLC activity on the host. This enzyme activity was inhibited by PI-PLC-specific monoclonal antibodies. The nucleotide sequence of the PI-PLC gene suggests that this secreted bacterial protein is synthesized as a larger precursor with a 31-amino-acid N-terminal extension to the mature enzyme of 298 amino acids. From analysis of coding and flanking sequences of the gene, we conclude that the PI-PLC gene does not reside next to the gene cluster of the other two secreted phospholipases C on the bacterial chromosome. The deduced amino acid sequence of the B. cereus PI-PLC contains a stretch of significant similarity to the glycosylphosphatidylinositol-specific PLC of Trypanosoma brucei. The conserved peptide is proposed to play a role in the function of these enzymes.  相似文献   
994.
We compared the intracellular pathways of the transferrin receptor (TfR) with those of the asialoglycoprotein receptor (ASGPR) and the cation-independent mannose 6-phosphate receptor (MPR)/insulin-like growth factor II receptor during endocytosis in Hep G2 cells. Cells were allowed to endocytose a conjugate of horseradish peroxidase and transferrin (Tf/HRP) via the TfR system. Postnuclear supernatants of homogenized cells were incubated with 3,3'-diaminobenzidine (DAB) and H2O2. Peroxidase-catalyzed oxidation of DAB within Tf/HRP-containing endosomes cross-linked their contents to DAB polymer. The cross-linking efficiency was dependent on the intravesicular Tf/HRP concentration. The loss of detectable receptors from samples of cell homogenates treated with DAB/H2O2 was used as a measure of colocalization with Tf/HRP. To compare the distribution of internalized plasma membrane receptors with Tf/HRP, cells were first surface-labeled with 125I at 0 degrees C. After uptake of surface 125I-labeled receptors at 37 degrees C in the presence of Tf/HRP, proteinase K was used at 0 degrees C to remove receptors remaining at the plasma membrane. Endocytosed receptors were isolated by means of immunoprecipitation. 125I-TfR and 125I-ASGPR were not sorted from endocytosed Tf/HRP. 125I-MPR initially also resided in Tf/HRP-containing compartments, however 70% was sorted from the Tf/HRP pathway between 20 and 45 min after uptake. To study the accessibility of total intracellular receptor pools to endocytosed Tf/HRP, nonlabeled cells were used, and the receptors were detected by means of Western blotting. The entire intracellular TfR population, but only 70 and 50% of ASGPR and MPR, respectively, were accessible to endocytosed Tf/HRP. These steady-state levels were reached by 10 min of continuous Tf/HRP uptake at 37 degrees C. We conclude that 30% of the intracellular ASGPR pool is not involved in endocytosis (i.e., is silent). Double-labeling immunoelectron microscopy on DAB-labeled cells showed a considerable pool of ASGPR in secretory albumin-positive, Tf/HRP-negative, trans-Golgi reticulum. We suggest that this pool represents the silent ASGPR that has been biochemically determined. A model of receptor transport routes is presented and discussed.  相似文献   
995.
Human factor IX is activated to factor IXa beta when factor XIa cleaves two peptide bonds, Arg 145-Ala 146 and Arg 180-Val 181, to release an activation peptide. In factor IX Chapel Hill (IXCH), isolated from a hemophilia B patient with a mild bleeding disorder, the arginine 145 residue has been replaced with a histidine. Thus factor IXCH is activated by factor XIa by cleaving only at the Arg 180-Val 181 bond, leaving the activation peptide attached, and resulting in an activated species, factor IXa alpha CH, that, like normal factor IXa alpha, is only 20% as active as factor IXa beta. It is reported that both factor IX and factor IXCH could be activated by trypsin to forms of factor IXa beta and factor IXa beta CH that had clotting activities identical to factor XIa-activated factor IX. Amino-terminal amino acid sequence analysis showed that trypsin cleaved factor IX at the same bonds as did factor XIa; factor IXCH was cleaved at the Arg 180-Val 181 bond, as normal, and was cleaved near the histidine 145, at the Lys 142-Leu 143 bond, releasing a slightly larger activation peptide than from normal factor IXa beta. Metal ions had no effect on the rate of activation of factor IX by trypsin; however, metal ions had a profound effect on the rate at which further incubation with trypsin inactivated factor IXa. Calcium and manganese protected factor IXa from inactivation by trypsin more effectively than magnesium, which was more effective than no metal ion. It is concluded that trypsin can activate normal factor IX and factor IXCH to fully active IXa beta forms.  相似文献   
996.
The abilities of normal and three abnormal factor IXa molecules to activate factor X and to bind to phospholipid membranes have been compared to define the contributions of protein-lipid interactions and factor IXa light chain-heavy chain interactions to the functioning of this protein. The abnormal proteins studied had altered amino acid residues in their light chains. The heavy-chain regions, containing the active site serine and histidine residues, were normal in the abnormal proteins on the basis of titration by antithrombin III. The binding constants (Kd) for normal (N), variant [Chapel Hill (CH) and Alabama (AL)], and gamma-carboxyglutamic acid (Gla) modified (MOD) factors IX and IXa to phosphatidylserine (PS)/phosphatidylcholine (PC) small, unilamellar vesicles (SUV) were measured by 90 degrees light scattering. The Kd values for factor IXN binding were quite sensitive to the PS content of the membrane but less sensitive to Ca2+ concentrations between 0.5 and 10 mM. The zymogen and activated forms of both normal and abnormal factor IX bound with similar affinities to PS/PC (30/70) SUV. In the cases of factor IXaN and factor IXaAL, but not factor IXaCH or factor IXaMOD, irreversible changes in scattering intensity suggested protein-induced vesicle fusion. Since the activation peptide is not released from factor IXaCH, the normal interaction of factor IXa with a membrane must require the release of the activation peptide and the presence of intact Gla residues. The rate of factor X activation by normal and abnormal factor IXa was obtained by using a chromogenic substrate for factor Xa in the presence of PS/PC (30/70) SUV and 5 mM Ca2+.  相似文献   
997.
Summary Winter rye (Secale cereale L cv. Puma) was grown at 20 °C and at 5 °C and the development of epidermal and mestome sheath cells of leaves from plants grown at both temperatures was compared by electron microscopy. At 5 °C, the cells became densely packed with cytoplasm and small vacuoles after 41 days of growth. By day 56 at 5 °C, epidermal and mestome sheath cells were small in diameter and multivacuolate with asymmetrically thickened walls. By day 76 at 5 °C, a new developmental stage had been reached in epidermal and mestome sheath cells. The cells were larger in diameter although the thickened cell walls and multivacuolate cytoplasm were still present. As epidermal and mestome sheath cell walls thickened during low temperature growth of winter rye, an increase in cuticle thickness and the deposition of a lamellar layer could be observed in epidermal and mestome sheath cells, respectively. The lipid-derived polymers from the leaves of rye plants grown at 20 °C were shown by reductive depolymerization and GC-MS analysis to be comprised of 18-hydroxy-9, 10-epoxyoctadecanoic acid (47%) and dihydroxyhexa-decanoic acid (29%). The leaves of plants grown at 5 °C had two to four times as much lipid-derived polymeric material as those grown at 20 °C and the proportion of the major monomer, 18-hydroxy-9,10-epoxyoctadecanoic acid, increased to 73% of the polymeric material. Physical isolation of both epidermal tissue and vascular bundles followed by GC-MS analysis of the monomeric components released by reduction of the respective lipid polymers showed that 18-hydroxy-9,10 epoxyoctadecanoic acid was the major monomer in the polymer of both the epidermis and the mestome sheaths. The presence of this epoxide monomer in both the cuticles and mestome sheath cell walls of rye leaves was confirmed and visualized by using an epoxide-specific staining reaction.  相似文献   
998.
L D Harris  J D Griffith 《Biochemistry》1988,27(18):6954-6959
The UvsX protein of T4 bacteriophage will catalyze the formation of D loops between linear single-stranded DNA (ssDNA) and homologous supercoiled double-stranded DNA (dsDNA) in the absence of T4 gene 32 protein (gp32). This reaction requires one monomer of UvsX protein per three nucleotides of ssDNA so that the ssDNA is completely covered with UvsX protein. Under these conditions, high rates of ATP hydrolysis are observed, and one-third of the products are joined paranemically. The reaction proceeds through a mechanism that creates homology-independent coaggregates of UvsX protein, dsDNA, and ssDNA. When UvsX protein is added to only 1 monomer per 8 nucleotides, but with 1 monomer of gp32 per 12 nucleotides, the rate of ATP hydrolysis is depressed, but D-loop formation is enhanced. Nearly all of the product is bound in plectonemic joints, and no coaggregated intermediates are formed. Coaggregate formation at high concentrations of UvsX protein is not inhibited by the presence of gp32; gp32 simply allows for efficient formation of D loops at such low concentrations of UvsX protein that coaggregates are not constructed. Electron microscopic visualization of the joint structures in this reaction reveals that both gp32 and UvsX protein are bound to the ssDNA. The single-stranded DNA binding (SSB) protein of Escherichia coli will substitute only partially for gp32: in the presence of SSB protein, D-loop formation can be catalyzed at one UvsX protein monomer per eight nucleotides, and it is accomplished without the formation of coaggregates, but a major portion of the product is joined paranemically.  相似文献   
999.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells.  相似文献   
1000.
L-Cysteinesulfonate (L-cysteate) is present in plasma, urine, and tissues in concentrations comparable to that of L-cysteinesulfinate, the primary oxidative metabolite of L-cysteine. Although cysteinesulfonate is known to be decarboxylated to taurine by cysteinesulfinate decarboxylase, the occurrence and importance of other metabolisms has not been examined. The present studies indicate that cysteinesulfonate partitions in vivo between decarboxylation and transamination; the latter reaction is catalyzed by aspartate aminotransferase and yields beta-sulfopyruvate. Whereas beta-sulfinylpyruvate, the product of cysteinesulfinate transamination, decomposes spontaneously, beta-sulfopyruvate is stable and is reduced by malate dehydrogenase to beta-sulfolactate. When L-[1-14C]cysteinesulfonate is given to mice, 60-75% is decarboxylated to taurine and about 25% is excreted in the urine as beta-sulfolactate. beta-Sulfo[1-14C] pyruvate is found to partition about equally between beta-sulfolactate and cysteinesulfonate formation; greater than 90% of the latter is decarboxylated. Parenterally administered beta-sulfo[1-14C]lactate is mostly excreted in the urine, but 12% is metabolized via beta-sulfopyruvate and cysteinesulfonate to 14CO2 and taurine. beta-Sulfopyruvate is not excreted, and only traces of sulfoacetate, perhaps formed by oxidative decarboxylation, are detected. These studies establish that cysteinesulfonate, beta-sulfopyruvate, and beta-sulfolactate are reversibly interconverted in vivo. Since only cysteinesulfonate is directly metabolized to CO2, the rate of 14CO2 formation from L-[1-14C]cysteinesulfonate is a valid measure of total cysteinesulfinate decarboxylase activity in vivo; use of this assay permits inhibitor effects to be accurately determined in intact mice. Thus, whereas in vitro assays indicate that beta-methyleneaspartate inhibits brain, liver, and kidney cysteinesulfinate decarboxylase by 0, greater than 60, and 90%, respectively, in vivo studies with L-[1-14C]cysteinesulfonate show net metabolic inhibition is about 40%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号