首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   15篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   1篇
  2018年   7篇
  2017年   1篇
  2016年   6篇
  2015年   11篇
  2014年   5篇
  2013年   6篇
  2012年   11篇
  2011年   15篇
  2010年   12篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   13篇
  2005年   14篇
  2004年   5篇
  2003年   7篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
21.
Goal, Scope and Background Whilst initially designed for industrial production systems, environmental life cycle assessment (LCA) has recently been increasingly applied to agriculture and forestry projects. Several authors suggested that the standard LCA methodology needs to be refined to cover the particularities of agri- and silvicultural production systems. Until now, water quantity received little attention in these methodological revisions, notwithstanding the well-known impact of agriculture and forestry on issues like water availability, drought and flood risk. This paper proposes an add-on to existing LCA methods in the form of an indicator set that integrates water quantity impacts of agri- and silvicultural production. Method First, system boundaries are discussed in order to identify the water flows between the production system and the environment. These flows are attributed to impact categories, linked to environmental burdens and to the areas of protection. Appropriate indicators are selected for each potential burden. Results and Discussion At the present, two input related impact categories deal with water quantity: Abiotic resource depletion and land use. The list of output related impact categories presented by Udo de Haes et al. (1999) does not include water quantity impacts like flood and drought risk. A new impact category “regional water balance” is introduced to cover these risks. Exceedance probabilities are used as indicators for these temporal variations in streamflow. Conclusion and Outlook The method presented in this paper can bring a life cycle assessment closer to real world concerns. The main drawback, however, is the increasing data requirement that might hinder the feasibility of the method. Future research should focus on this problem, for instance by applying a relatively simple numerical model that can calculate the indicator scores from more easily accessible data.  相似文献   
22.
Dysregulation of apoptosis may support tumorigenesis by allowing cells to live beyond their normally intended life span. The various receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are located on chromosome 8p21.2, a region frequently deleted in ovarian cancer. Lack of expression of TRAIL receptor 1 (death receptor 4, DR4) correlates with resistance to TRAIL-induced apoptosis in ovarian cancer cells. Reconstitution of DR4 in the TRAIL-resistant A2780 ovarian cancer cell line was investigated with the demethylating agent 5-aza-2'-deoxycytidine and transient gene transfer. Regulation of other genes in the TRAIL pathway by 5-aza-2'-deoxycytidine was assessed in DNA GeneChip experiments. Primary ovarian cancers were analyzed by methylation-specific PCR and immunohistochemical analysis of a tissue microarray. Regulation of DR4 expression by demethylation or transient transfection is of functional relevance for TRAIL resistance in an ovarian cancer cell line. Hypermethylation of the DR4 promoter could be found in 10 of 36 (27.7%) DNAs isolated from ovarian cancer tissue. In an independent set of 68 ovarian cancer cases, a complete loss or down-regulation of DR4 protein expression was observed 10.3% and 8.8% patients, respectively. A significant (P = 0.019) majority of these patients was below 50 years of age. Our findings show a functional relevance of the level of DR4 expression in ovarian cancer and suggest a substantial contribution of DR4 hypermethylation and consequent loss of DR4 expression to ovarian cancer pathogenesis, particularly in premenopausal patients.  相似文献   
23.
The identification of epitopes involved in protein-protein interactions is essential for understanding protein structure and function. Large scale efforts, although identifying the interactions, did not always yield these epitopes, could not confirm most of the known interactions, and seemed particularly unsuccessful for native intrinsic membrane proteins. We have developed a fluidics-based approach (non-steady-state kinetics) to obtain the broadest set of the epitopes interacting with a given target and applied it to a phage display methodology optimized for membrane proteins. Phages expressing a liver cDNA library were screened against a membrane protein (voltage-dependent anion channel) reconstituted into liposomes and captured on a chip surface. The controlled fluidics was obtained by a surface plasmon resonance (SPR) device that combined the advantages of working with minute reaction volumes and non-equilibrium conditions. We demonstrated selective enrichment of binders and could even select for different binding affinities by fractionation of the selected outputs at various elution times. With voltage-dependent anion channel as bait (a mitochondrial channel critical for cellular metabolism and apoptosis) we found at least 40% of its already reported ligands and independently confirmed 55 novel functional interactions, some of which fully blocked the channel. This highly efficient approach is generally applicable for any protein and could be automated and scaled up even without the use of a SPR device. The epitopes directly identified by this method are useful not only for unraveling interactomes but also for drug design and therapeutics.  相似文献   
24.
25.
26.
27.
The biotechnological approach to improve performance or yield of crops or for engineering metabolic pathways requires the expression of a number of transgenes, each with a specific promoter to avoid induction of silencing mechanisms. In maize (Zea mays), used as a model for cereals, an efficient Agrobacterium tumefaciens-mediated transformation system has been established that is applied for translational research. In the current transformation vectors, the promoters of the 35S gene of the cauliflower mosaic virus and of the ubiquitin gene of maize are often used to drive the bialaphos-selectable marker and the transgene, respectively. To expand the number of promoters, genes with either constitutive or seed-specific expression were selected in Brachypodium distachyon, a model grass distantly related to maize. After the corresponding Brachypodium promoters had been fused to the β-glucuronidase reporter gene, their activity was followed throughout maize development and quantified in a fluorimetric assay with the 4-methylumbelliferyl β-D-glucuronide substrate. The promoters pBdEF1α and pBdUBI10 were constitutively and highly active in maize, whereas pBdGLU1 was clearly endosperm-specific, hence, expanding the toolbox for transgene analysis in maize. The data indicate that Brachypodium is an excellent resource for promoters for transgenic research in heterologous cereal species.  相似文献   
28.
Temporally and spatially defined calcium signatures are integral parts of numerous signalling pathways. Monitoring calcium dynamics with high spatial and temporal resolution is therefore critically important to understand how this ubiquitous second messenger can control diverse cellular responses. Yellow cameleons (YCs) are fluorescence resonance energy transfer (FRET)-based genetically encoded Ca(2+) -sensors that provide a powerful tool to monitor the spatio-temporal dynamics of Ca(2+) fluxes. Here we present an advanced set of vectors and transgenic lines for live cell Ca(2+) imaging in plants. Transgene silencing mediated by the cauliflower mosaic virus (CaMV) 35S promoter has severely limited the application of nanosensors for ions and metabolites and we have thus used the UBQ10 promoter from Arabidopsis and show here that this results in constitutive and stable expression of YCs in transgenic plants. To improve the spatial resolution, our vector repertoire includes versions of YCs that can be targeted to defined locations. Using this toolkit, we identified temporally distinct responses to external ATP at the plasma membrane, in the cytosol and in the nucleus of neighbouring root cells. Moreover analysis of Ca(2+) dynamics in Lotus japonicus revealed distinct Nod factor induced Ca(2+) spiking patterns in the nucleus and the cytosol. Consequently, the constructs and transgenic lines introduced here enable a detailed analysis of Ca(2+) dynamics in different cellular compartments and in different plant species and will foster novel approaches to decipher the temporal and spatial characteristics of calcium signatures.  相似文献   
29.
30.
Candida albicans is a major human fungal pathogen, causing superficial, as well as life‐threatening invasive infections. Therefore, it has to adequately sense and respond to the host defense by expressing appropriate virulence attributes. The most important virulence factor of C. albicans is the yeast‐to‐hyphae morphogenetic switch, which can be induced by numerous environmental cues, including the amino acid methionine. Here, we show an essential role for methionine permease Mup1 in methionine‐induced morphogenesis, biofilm formation, survival inside macrophages and virulence. Furthermore, we demonstrate that this process requires conversion of methionine into S‐adenosyl methionine (SAM) and its decarboxylation by Spe2. The resulting amino‐propyl group is then used for biosynthesis of polyamines, which have been shown to activate adenylate cyclase. Inhibition of the SPE2 SAM decarboxylase gene strongly impairs methionine‐induced morphogenesis on specific media and significantly delays virulence in the mouse systemic infection model system. Further proof of the connection between methionine uptake and initial metabolism and the cAMP‐PKA pathway was obtained by showing that both Mup1 and Spe2 are required for cAMP production in response to methionine. Our results suggest that amino acid transport and further metabolism are interesting therapeutic targets as inhibitors of this may prevent the morphogenetic switch, thereby preventing virulence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号