首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   31篇
  国内免费   2篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   11篇
  2018年   9篇
  2017年   7篇
  2016年   16篇
  2015年   24篇
  2014年   31篇
  2013年   27篇
  2012年   39篇
  2011年   70篇
  2010年   30篇
  2009年   29篇
  2008年   43篇
  2007年   47篇
  2006年   29篇
  2005年   31篇
  2004年   31篇
  2003年   36篇
  2002年   20篇
  2001年   9篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有619条查询结果,搜索用时 15 毫秒
51.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   
52.
53.
54.
The complement system is an essential element of the innate immune response that becomes activated upon recognition of molecular patterns associated with microorganisms, abnormal host cells, and modified molecules in the extracellular environment. The resulting proteolytic cascade tags the complement activator for elimination and elicits a pro‐inflammatory response leading to recruitment and activation of immune cells from both the innate and adaptive branches of the immune system. Through these activities, complement functions in the first line of defense against pathogens but also contributes significantly to the maintenance of homeostasis and prevention of autoimmunity. Activation of complement and the subsequent biological responses occur primarily in the extracellular environment. However, recent studies have demonstrated autocrine signaling by complement activation in intracellular vesicles, while the presence of a cytoplasmic receptor serves to detect complement‐opsonized intracellular pathogens. Furthermore, breakthroughs in both functional and structural studies now make it possible to describe many of the intricate molecular mechanisms underlying complement activation and the subsequent downstream events, as well as its cross talk with, for example, signaling pathways, the coagulation system, and adaptive immunity. We present an integrated and updated view of complement based on structural and functional data and describe the new roles attributed to complement. Finally, we discuss how the structural and mechanistic understanding of the complement system rationalizes the genetic defects conferring uncontrolled activation or other undesirable effects of complement.  相似文献   
55.
56.
Adherens junctions, which play a central role in intercellular adhesion, comprise clusters of type I classical cadherins that bind via extracellular domains extended from opposing cell surfaces. We show that a molecular layer seen in crystal structures of E- and N-cadherin ectodomains reported here and in a previous C-cadherin structure corresponds to the extracellular architecture of adherens junctions. In all three ectodomain crystals, cadherins dimerize through a trans adhesive interface and are connected by a second, cis, interface. Assemblies formed by E-cadherin ectodomains coated on liposomes also appear to adopt this structure. Fluorescent imaging of junctions formed from wild-type and mutant E-cadherins in cultured cells confirm conclusions derived from structural evidence. Mutations that interfere with the trans interface ablate adhesion, whereas cis interface mutations disrupt stable junction formation. Our observations are consistent with a model for junction assembly involving strong trans and weak cis interactions localized in the ectodomain.  相似文献   
57.
58.
The objectives of this study were to determine (a) if reactive oxygen metabolites (ROMs) are a reliable parameter for monitoring oxidative stress in athletes alone or in association with other parameters of oxidative stress and depending on whether antioxidant supplements are taken or not; (b) the level of oxidative stress in athletes before the competition season; and (c) if oxidative status could be improved in volleyball athletes. Sixteen women athletes (supplemented group) received an antioxidant cocktail containing vitamin E, vitamin C, zinc gluconate, and selenium as a dietary supplement during a 6-week training period, whereas 12 of them (control group) received no dietary supplement. Blood samples were taken before and after the training period. The following parameters were measured: ROMs, superoxide anion (O2??), malondialdehyde (MDA), advanced oxidation protein products (AOPP), lipid hydroperoxide (LOOH), biological antioxidative potential (BAP), paraoxonase activity toward paraoxon (POase) and diazoxon (DZOase), superoxide dismutase(SOD), total sulfydryl group concentration (SH groups), and lipid status. Reactive oxygen metabolites were taken as the dependent variable and MDA, O2??, AOPP, and LOOH as independent variables. In the group of athletes who have received supplementation, linear regression analysis revealed that the implemented model had a lower influence on dROMs (70.4 vs. 27.9%) after the training period. The general linear model showed significant differences between parameters before and after training/supplementation (Wilks' lambda = 0.074, F = 11.76, p < 0.01). At the partial level, significant increases in ROM levels (p <0.05, 95% confidence interval [CI]: 286-337), SOD activity (CI: 113-144), and BAP (CI: 2,388-2,580) (p < 0.01) were observed. The association between ROMs and other parameters of oxidative stress was reduced in athletes who received supplements. During the precompetition training period, treatment with dietary supplements prevented the depletion of antioxidative defense in volleyball athletes.  相似文献   
59.
Thermus thermophilus is a model strain to unravel the molecular basis of horizontal gene transfer in hot environments. Previous genetic studies led to the identification of a macromolecular transport machinery mediating DNA uptake in an energy-dependent manner. Here, we have addressed how the transporter is energized. Inspection of the genome sequence revealed four putative transport (AAA) ATPases but only the deletion of one, PilF, led to a transformation defect. PilF is similar to transport ATPases of type IV and type II secretions systems but has a unique N-terminal sequence that carries a triplicated GSPII domain. To characterize PilF biochemically it was produced in Escherichia coli and purified. The recombinant protein displayed NTPase activity with a preference for ATP. Gel filtration analyses combined with dynamic light scattering demonstrated that PilF is monodispersed in solution and forms a complex of 590 ± 30 kDa, indicating a homooligomer of six subunits. It contains a tetracysteine motif, previously shown to bind Zn2+ in related NTPases. Using atomic absorption spectroscopy, indeed Zn2+ was detected in the enzyme, but in contrast to all known zinc-binding traffic NTPases only one zinc atom was bound to the hexamer. Deletion of the four cysteine residues led to a loss of Zn2+. Nevertheless, the mutant protein retained ATPase activity and hexameric complex formation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号