首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1236篇
  免费   107篇
  2023年   14篇
  2022年   7篇
  2021年   49篇
  2020年   22篇
  2019年   32篇
  2018年   34篇
  2017年   42篇
  2016年   52篇
  2015年   76篇
  2014年   89篇
  2013年   86篇
  2012年   117篇
  2011年   94篇
  2010年   72篇
  2009年   64篇
  2008年   62篇
  2007年   71篇
  2006年   51篇
  2005年   51篇
  2004年   49篇
  2003年   41篇
  2002年   50篇
  2001年   20篇
  2000年   10篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
  1962年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有1343条查询结果,搜索用时 15 毫秒
181.
Summary From a cell-free enzyme solution ofPs. aeruginosa lipase and ali-esterase were separated by means of paper electrophoresis. Part I: Antonie van Leeuwenhoek32, 241, 1957.  相似文献   
182.
Ecological diversification through divergent selection is thought to be a major force during the process of adaptive radiations. However, the large sizes and complexity of most radiations such as those of the cichlids in the African Great Lakes make it impossible to infer the exact evolutionary history of any population divergence event. The genus Alcolapia, a small cichlid lineage endemic to Lakes Magadi and Natron in East Africa, exhibits phenotypes similar to some of those found in cichlids of the radiations of the African Great Lakes. The simplicity within Alcolapia makes it an excellent model system to investigate ecological diversification and speciation. We used an integrated approach including population genomics based on RAD‐seq data, geometric morphometrics and stable isotope analyses to investigate the eco‐morphological diversification of tilapia in Lake Magadi and its satellite lake Little Magadi. Additionally, we reconstructed the demographic history of the species using coalescent simulations based on the joint site frequency spectrum. The population in Little Magadi has a characteristically upturned mouth—possibly an adaptation to feeding on prey from the water surface. Eco‐morphological differences between populations within Lake Magadi are more subtle, but are consistent with known ecological differences between its lagoons such as high concentrations of nitrogen attributable to extensive guano deposits in Rest of Magadi relative to Fish Springs Lagoon. All populations diverged simultaneously only about 1100 generations ago. Differences in levels of gene flow between populations and the effective population sizes have likely resulted in the inferred heterogeneous patterns of genome‐wide differentiation.  相似文献   
183.
Because of resistance development by cancer cells against current anticancer drugs, there is a considerable interest in developing novel antitumor agents. We have previously demonstrated that CIGB‐552, a novel cell‐penetrating synthetic peptide, was effective in reducing tumor size and increasing lifespan in tumor‐bearing mice. Studies of protein–peptide interactions have shown that COMMD1 protein is a major mediator of CIGB‐552 antitumor activity. Furthermore, a typical serine‐protease degradation pattern for CIGB‐552 in BALB/c mice serum was identified, yielding peptides which differ from CIGB‐552 in size and physical properties. In the present study, we show the results obtained from a comparative analysis between CIGB‐552 and its main metabolites regarding physicochemical properties, cellular internalization, and their capability to elicit apoptosis in MCF‐7 cells. None of the analyzed metabolites proved to be as effective as CIGB‐552 in promoting apoptosis in MCF‐7. Taking into account these results, it seemed important to examine their cell‐penetrating capacity and interaction with COMMD1. We show that internalization, a lipid binding‐dependent process, is impaired as well as metabolite–COMMD1 interaction, key component of the apoptotic mechanism. Altogether, our results suggest that features conferred by the amino acid sequence are decisive for CIGB‐552 biological activity, turning it into the minimal functional unit. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
184.
Antarctica is one of the less prone environments for plant invasions, nevertheless a growing number of non-native species have been registered in the last decades with negative effects on native flora. Here we assessed adaptive phenotypic plasticity in three photoprotective traits (non-photochemical quenching, total soluble sugars, and de-epoxidation state of xanthophylls cycle), and fitness-related traits (maximum quantum yield, photosynthetic rate and total biomass) in the invasive species Poa annua and Deschampsia antarctica under current conditions of water availability and those projected by climate change models. In addition, two manipulative experiments in controlled and field conditions were conducted to evaluate the competitive ability and survival of both species under current and climate change conditions. Moreover, we performed an experiment with different water availabilities to assess cell damage as a potential mechanism involved in the competitive ability deployed in both species. Finally, was assessed the plasticity and biomass of both species subject to factorial abiotic scenarios (water × temperature, and water × nutrients) ranging from current to climate change condition. Overall, results showed that P. annua had greater phenotypic plasticity in photoprotective strategies, higher performance, and greater competitive ability and survival than D. antarctica under current and climate change conditions. Also, cell damage, assessed by lipid peroxidation, was significantly greater in D. antarctica when grown in presence of P. annua compared when grown alone. Finally, P. annua showed a greater plasticity and biomass than D. antarctica under the factorial abiotic scenarios, being more evident under a climate change scenario (i.e., higher soil moisture). Our study suggests that the high adaptive plasticity and competitive ability deployed by P. annua under current and climate change conditions allows it to cope with harsh abiotic conditions and could help explain its successful invasion in the Antarctica.  相似文献   
185.
The HPV16 E7 oncoprotein is an extended dimer, with a stable and cooperative fold, but that displays properties of "natively unfolded" proteins. Two regions of conserved sequence are found in E7 proteins, where the N-terminus (1-40) includes the retinoblastoma tumor suppressor binding and casein kinase II phosphorylation sites. A fragment containing the highly acidic N-terminal half shows an apparently disordered conformation by far-UV-circular dichroism (CD) at neutral pH, and its hydrodynamic radius is much larger than a neutral peptide of the same length. Trifluoroethanol and micellar concentrations of sodium dodecyl sulfate stabilize a much more helical structure at pH 4.0 than at pH 7.5, while submicellar concentrations of the detergent yield a beta-strand. The shape, pH, and temperature dependence of the CD spectrum at pH 7.5 are indicative of a poly proline type II structure. This structure is stabilized by phosphorylation, which would translate into increased transforming activity in the cell. Thus, the intrinsically disordered properties of the N-terminal module of E7 are responsible for the structural plasticity of the oncoprotein. Although the domain is not a compact and cooperatively folded unit, it is a bona fide functional domain, evolved to maintain a dynamic but extended structure in the cell. These properties allow adaptation to a variety of protein targets and expose the PEST degradation sequence that regulates its turnover in the cell, a modification of which leads to the accumulation of E7 species with consequences in the transformation process.  相似文献   
186.
187.
188.
189.
190.
Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-d-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号