首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   5篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   6篇
  2004年   10篇
  2003年   6篇
  2002年   10篇
  2001年   10篇
  2000年   4篇
  1999年   10篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有128条查询结果,搜索用时 312 毫秒
1.
Lipid A binding sites in membranes of macrophage tumor cells   总被引:14,自引:0,他引:14  
Lipopolysaccharide affects a variety of eukaryotic cells and mammalian organisms. These actions are involved in the pathogenesis of Gram-negative septicemia. Many of the actions of lipopolysaccharide are believed to be caused by its active moiety, lipid A. Our laboratory has previously identified a bioactive lipid A precursor, termed lipid IVA (Raetz, C. R. H., Purcell, S., Meyer, M. V., Qureshi, N., and Takayama, K. (1985) J. Biol. Chem. 260, 16080-16888), which can be labeled with 32P of high specific activity and purified. In this work we have used the labeled probe, 4'-32P-lipid IVA, to develop a novel assay for the specific binding of lipid IVA to whole cells. We have also demonstrated its use in a ligand blotting assay of immobilized cellular proteins. Using the whole cell assay, we show that 4'-32P-lipid IVA specifically binds to RAW 264.7 macrophage-like cultured cells. The binding is saturable, is inhibited with excess unlabeled lipid IVA, and is proteinase K-sensitive. It displays cellular and pharmacological specificity. Using the ligand blotting assay, we show that several RAW 264.7 cell proteins can bind 4'-32P-lipid IVA. The two principal binding proteins have Mr values of 31 and 95 kDa, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fractionation studies indicate that the 31-kDa protein is enriched in the nuclear fraction and may be a histone, whereas the 95-kDa protein is enriched in the membrane fraction. The binding assays that we have developed should lead to a clearer understanding of lipid A/animal cell interactions.  相似文献   
2.
Patterns of sequence variation in the mitochondrial D-loop region of shrews   总被引:8,自引:2,他引:6  
Direct sequencing of the mitochondrial displacement loop (D-loop) of shrews (genus Sorex) for the region between the tRNA(Pro) and the conserved sequence block-F revealed variable numbers of 79-bp tandem repeats. These repeats were found in all 19 individuals sequenced, representing three subspecies and one closely related species of the masked shrew group (Sorex cinereus cinereus, S. c. miscix, S. c. acadicus, and S. haydeni) and an outgroup, the pygmy shrew (S. hoyi). Each specimen also possessed an adjacent 76-bp imperfect copy of the tandem repeats. One individual was heteroplasmic for length variants consisting of five and seven copies of the 79-bp tandem repeat. The sequence of the repeats is conducive to the formation of secondary structure. A termination-associated sequence is present in each of the repeats and in a unique sequence region 5' to the tandem array as well. Mean genetic distance between the masked shrew taxa and the pygmy shrew was calculated separately for the unique sequence region, one of the tandem repeats, the imperfect repeat, and these three regions combined. The unique sequence region evolved more rapidly than the tandem repeats or the imperfect repeat. The small genetic distance between pairs of tandem repeats within an individual is consistent with a model of concerted evolution. Repeats are apparently duplicated and lost at a high rate, which tends to homogenize the tandem array. The rate of D- loop sequence divergence between the masked and pygmy shrews is estimated to be 15%-20%/Myr, the highest rate observed in D-loops of mammals. Rapid sequence evolution in shrews may be due either to their high metabolic rate and short generation time or to the presence of variable numbers of tandem repeats.   相似文献   
3.
High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to calcium chelating agents was instead consistent with a microdomain interaction. A computational model of the KCa1.1-Cav3 complex suggested that multiple Cav3 channels were necessary to activate KCa1.1 channels, potentially causing the KCa1.1-Cav3 complex to be more susceptible to calcium chelators. Here, we expanded the model and compared it to a KCa1.1-Cav2.2 model to examine the role of Cav channel conductance and kinetics on KCa1.1 activation. As found for direct recordings, the voltage-dependent and kinetic properties of Cav3 channels were reflected in the activation of KCa1.1 current, including transient activation from lower voltages than other KCa1.1-Cav complexes. Substantial activation of KCa1.1 channels required the concerted activity of several Cav3.2 channels. Combined with the effect of EGTA, these results suggest that the Ca2+ domains of several KCa1.1-Cav3 complexes need to cooperate to generate sufficient [Ca2+]i, despite the physical association between KCa1.1 and Cav3 channels. By comparison, Cav2.2 channels were twice as effective at activating KCa1.1 channels and a single KCa1.1-Cav2.2 complex would be self-sufficient. However, even though Cav3 channels generate small, transient currents, the regulation of KCa1.1 activity by Cav3 channels is possible if multiple complexes cooperate through microdomain interactions.  相似文献   
4.
Amphotericin B is the most effective drug for treating many life-threatening fungal infections. Amphotericin B administration is limited by infusion-related toxicity, including fever and chills, an effect postulated to result from proinflammatory cytokine production by innate immune cells. Because amphotericin B is a microbial product, we hypothesized that it stimulates immune cells via Toll-like receptors (TLRs) and CD14. We show here that amphotericin B induces signal transduction and inflammatory cytokine release from cells expressing TLR2 and CD14. Primary murine macrophages and human cell lines expressing TLR2, CD14, and the adapter protein MyD88 responded to amphotericin B with NF-kappaB-dependent reporter activity and cytokine release, whereas cells deficient in any of these failed to respond. Cells mutated in TLR4 were less responsive to amphotericin B stimulation than cells expressing normal TLR4. These data demonstrate that TLR2 and CD14 are required for amphotericin B-dependent inflammatory stimulation of innate immune cells and that TLR4 may also provide stimulation of these cells. Our results provide a putative molecular basis for inflammatory responses elicited by amphotericin B and suggest strategies to eliminate the acute toxicity of this drug.  相似文献   
5.

Background

Of the animals typically used to study fertilization-induced calcium dynamics, none is as accessible to genetics and molecular biology as the model organism Caenorhabditis elegans. Motivated by the experimental possibilities inherent in using such a well-established model organism, we have characterized fertilization-induced calcium dynamics in C. elegans.

Results

Owing to the transparency of the nematode, we have been able to study the calcium signal in C. elegans fertilization in vivo by monitoring the fluorescence of calcium indicator dyes that we introduce into the cytosol of oocytes. In C. elegans, fertilization induces a single calcium transient that is initiated soon after oocyte entry into the spermatheca, the compartment that contains sperm. Therefore, it is likely that the calcium transient is initiated by contact with sperm. This calcium elevation spreads throughout the oocyte, and decays monotonically after which the cytosolic calcium concentration returns to that preceding fertilization. Only this single calcium transient is observed.

Conclusion

Development of a technique to study fertilization induced calcium transients opens several experimental possibilities, e.g., identification of the signaling events intervening sperm binding and calcium elevation, identifying the possible roles of the calcium elevation such as the completion of meiosis, the formation of the eggshell, and the establishing of the embryo's axis of symmetry.  相似文献   
6.
The immunopotentiating activity of neisserial porins, the major outer membrane protein of the pathogenic Neisseria, is mediated by its ability to stimulate B cells and up-regulate the surface expression of B7-2. This ability is dependent on MyD88 and Toll-like receptor (TLR)2 expression, as demonstrated by a lack of a response by B cells from MyD88 or TLR2 knockout mice to the porins. Using previously described TLR2-dependent reporter constructs, these results were confirmed and were shown to be due to induction of NF-kappaB nuclear translocation. This is the first demonstration of known vaccine adjuvant to stimulate immune cells via TLR2.  相似文献   
7.
Dying cells stimulate inflammation, and this response is thought to contribute to the pathogenesis of many diseases. Very little has been known, however, about how cell death triggers inflammation. We found here that the acute neutrophilic inflammatory response to cell injury requires the signaling protein myeloid differentiation primary response gene 88 (Myd88). Analysis of the contribution of Myd88-dependent receptors to this response revealed only a minor reduction in mice doubly deficient in Toll-like receptor 2 (Tlr2) and Tlr4 and normal responses in mice lacking Tlr1, Tlr3, Tlr6, Tlr7, Tlr9, Tlr11 or the interleukin-18 receptor (IL-18R). However, mice lacking IL-1R showed a markedly reduced neutrophilic inflammatory response to dead cells and tissue injury in vivo as well as greatly decreased collateral damage from inflammation. This inflammatory response required IL-1alpha, and IL-1R function was required on non-bone-marrow-derived cells. Notably, the acute monocyte response to cell death, which is thought to be important for tissue repair, was much less dependent on the IL-1R-Myd88 pathway. Also, this pathway was not required for the neutrophil response to a microbial stimulus. These findings suggest that inhibiting the IL-1R-Myd88 pathway in vivo could block the damage from acute inflammation that occurs in response to sterile cell death, and do so in a way that might not compromise tissue repair or host defense against pathogens.  相似文献   
8.
Innate and adaptive immune responses are initiated upon recognition of microbial molecules by Toll-like receptors (TLRs). We have investigated the importance of these receptors in the induction of pro-inflammatory cytokines and macrophage resistance to infection with Coxiella burnetii, an obligate intracellular bacterium and the etiological agent of Q fever. By using a Chinese hamster ovary/CD14 cell line expressing either functional TLR2 or TLR4, we determined that C. burnetii phase II activates TLR2 but not TLR4. Macrophages deficient for TLR2, but not TLR4, produced less tumor necrosis factor-alpha and interleukin-12 upon C. burnetii infection. Furthermore, it was found that TLR2 activation interfered with C. burnetii intracellular replication, as macrophages from TLR2-deficient mice were highly permissive for C. burnetii growth compared with macrophages from wild type mice or TLR4-deficient mice. Although LPS modifications distinguish virulent C. burnetii phase I bacteria from avirulent phase II organisms, electrospray ionization-mass spectrometry analysis showed that the lipid A moieties isolated from these two phase variants are identical. Purified lipid A derived from either phase I or phase II LPS failed to activate TLR2 and TLR4. Indeed, the lipid A molecules were able to interfere with TLR4 signaling in response to purified Escherichia coli LPS. These studies indicate that TLR2 is an important host determinant that mediates recognition of C. burnetii and a response that limits growth of this intracellular pathogen.  相似文献   
9.
Lipopolysaccharide (LPS) activates innate immune responses through TLR4·MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4·MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IVA, a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IVA activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IVA activation. Computational studies suggested that unique ionic interactions exist between lipid IVA and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4′-phosphate on lipid IVA interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys367 and Arg434) at the dimerization interface. When replaced with their negatively charged human counterparts Glu369 and Gln436, mouse TLR4 was no longer responsive to lipid IVA. In contrast, human TLR4 gained lipid IVA responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IVA species specificity. Thus, using lipid IVA as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation.  相似文献   
10.
Arginine-specific gingipain and lysine-specific gingipain are two major cysteine proteinases produced by Porphyromonas gingivalis. To clarify the role of gingipains in the interaction between P. gingivalis and the innate immune system, CHO reporter cells expressing TLR2 or TLR4 were stimulated with wildtype or gingipain-deficient P. gingivalis cells and activation of nuclear factor-kappaB in these cells was examined. While CHO/CD14 cells and 7.19 cells, an MD-2-defective mutant derived from CHO/CD14 cells, failed to respond to wild-type P. gingivalis, they responded to gingipain-deficient P. gingivalis. On the other hand, CHO/CD14/TLR2 cells responded to both wild-type and gingipain-deficient P. gingivalis. These results suggested that gingipains have no effects on TLR2-dependent signaling from P. gingivalis but have inhibitory effects on TLR2-and TLR4-independent signaling in CHO cells. Indeed, the activity of gingipain-deficient P. gingivalis to induce the activation of 7.19 cells was diminished after treatment of the bacterial cells with gingipains. We next partially purified bacterial cell components activating 7.19 cells from gingipain-deficient P. gingivalis. The activity of the partially purified components was diminished by treatment with heat or gingipains. It is also noteworthy that anti-CD14 mAb inhibited the activation of 7.19 cells induced by the partially purified components. These results indicated that the components of P. gingivalis that were able to induce TLR2-and TLR4-independent signaling were inactivated by gingipains before being recognized by CD14. The inactivation of the components would be helpful for P. gingivalis to escape from the innate immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号