首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   20篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   11篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   14篇
  2005年   8篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   7篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1992年   9篇
  1991年   7篇
  1990年   2篇
  1989年   10篇
  1988年   3篇
  1987年   6篇
  1986年   9篇
  1985年   9篇
  1984年   10篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1976年   7篇
  1975年   4篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   5篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有254条查询结果,搜索用时 109 毫秒
81.
Increased Abeta42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Abeta42. Among the more potent Abeta42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2-selective NSAID. Many COX-2-selective NSAIDs tested raised Abeta42, including multiple COX-2-selective derivatives of two Abeta42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Abeta42. These compounds seem to target the gamma-secretase complex, increasing gamma-secretase-catalyzed production of Abeta42 in vitro. Short-term in vivo studies show that two Abeta42-raising compounds increase Abeta42 levels in the brains of mice. The elevations in Abeta42 by these compounds are comparable to the increases in Abeta42 induced by Alzheimer disease-causing mutations in the genes encoding amyloid beta protein precursor and presenilins, raising the possibility that exogenous compounds or naturally occurring isoprenoids might increase Abeta42 production in humans.  相似文献   
82.
The recognition and binding of sperm cells to the zona pellucida (the extracellular matrix of the oocyte) are essential for fertilization and are believed to be species specific. Freshly ejaculated sperm cells do not bind to the zona pellucida. Physiologically this interaction is initiated after sperm activation in the female genital tract (capacitation) via a yet unknown mechanism, resulting in the binding of a receptor in the apical sperm plasma membrane to the zona pellucida. In order to mimic this biochemically, we isolated zona pellucida fragments from gilt ovaries to prepare an affinity column with the intact zona pellucida structure and loaded this column with solubilized apical plasma membranes of boar sperm cells before and after in vitro capacitation. With this technique we demonstrated that two plasma membrane proteins of capacitated boar sperm cells showed high affinity for zona pellucida fragments. Further analysis showed that these proteins were tyrosine phosphorylated. Plasma membrane proteins from freshly ejaculated sperm cells did not exhibit any zona pellucida binding proteins, likely because these proteins were not tyrosine phosphorylated.  相似文献   
83.
Pulmonary surfactant, a mixture of lipids and proteins, reduces the surface tension at the air-water interface of the lung alveoli by forming a surface active film. This way, it prevents alveoli from collapsing and facilitates the work of breathing. Surfactant protein C (SP-C) plays an important role in this surfactant function. SP-C is expressed as a proprotein (proSP-C), which becomes posttranslationally modified with palmitate and undergoes several rounds of proteolytical cleavage. This results in the formation of mature SP-C, which is stored in the lamellar bodies (LB) and finally secreted into the alveolar space. Recently, new insights into the sorting, processing and palmitoylation of proSP-C have been obtained by mutagenesis studies. Moreover, reports on the association of development of lung disease with SP-C deficiency have led to new insights into the importance of SP-C for proper surfactant homeostasis. In addition, new information has become available on the role of the palmitoyl chains of SP-C in surface activity. This review summarizes these recent developments in the processing and function of SP-C, with particular emphasis on the signals for and role of palmitoylation of SP-C.  相似文献   
84.
The surfactant protein C precursor (proSP-C) is palmitoylated on two cysteines adjacent to its transmembrane domain. We showed previously that palmitoylation of proSP-C occurs in a postendoplasmic reticulum compartment and is not affected by the Golgi-disturbing agent brefeldin A (BFA). In contrast, the investigations presented here showed that BFA almost completely abolished palmitoylation of proSP-C mutants that contained alterations in the region between the palmitoylated cysteines and the transmembrane domain, including a Pro 30 to Leu mutant associated with interstitial lung disease. This differential effect of BFA was not caused by differences in the palmitoylation kinetics between wild-type proSP-C and the mutants and was not mimicked by nocodazole and monensin. However, differences between the mutants and wild-type proSP-C in the relative degree of processing suggest that BFA may unmask a difference in routing. This would imply that the amino acids just N-terminal of the transmembrane domain may be important for a proper sorting of proSP-C.  相似文献   
85.
The ability of isolated rat hepatocytes to respond to phorbol-12-myristate-13-acetate (PMA) with acute stimulation of de novo fatty acid synthesis was markedly depressed at 4, 22 and 48 h after partial hepatectomy (PH). This desensitization was not due to surgical stress as shown by comparison with hepatocytes from sham-operated animals. Moreover, the total activity of protein kinase C (PK-C), the principal phorbol ester receptor, was not down-regulated at 22 h after partial hepatectomy. Partial hepatectomy rather caused a small but distinct shift in subcellular PK-C distribution toward the particulate fraction thereby suggesting a modest activation of PK-C. We conclude that the PH-induced desensitization to PMA occurs at a point beyond PK-C activation.  相似文献   
86.
As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including POU class 5 homeobox 1 (OCT4) and sonic hedgehog (SHH). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme.  相似文献   
87.
γ-Secretase is a fascinating, multi-subunit, intramembrane cleaving protease that is now being considered as a therapeutic target for a number of diseases. Potent, orally bioavailable γ-secretase inhibitors (GSIs) have been developed and tested in humans with Alzheimer's disease (AD) and cancer. Preclinical studies also suggest the therapeutic potential for GSIs in other disease conditions. However, due to inherent mechanism based-toxicity of non-selective inhibition of γ-secretase, clinical development of GSIs will require empirical testing with careful evaluation of benefit versus risk. In addition to GSIs, compounds referred to as γ-secretase modulators (GSMs) remain in development as AD therapeutics. GSMs do not inhibit γ-secretase, but modulate γ-secretase processivity and thereby shift the profile of the secreted amyloid β peptides (Aβ) peptides produced. Although GSMs are thought to have an inherently safe mechanism of action, their effects on substrates other than the amyloid β protein precursor (APP) have not been extensively investigated. Herein, we will review the current state of development of GSIs and GSMs and explore pertinent biological and pharmacological questions pertaining to the use of these agents for select indications. This article is part of a Special Issue entitled: Intramembrane Proteases.  相似文献   
88.
A subset of non-steroidal anti-inflammatory drugs modulates the γ cleavage site in the amyloid precursor protein (APP) to selectively reduce production of Aβ42. It is unclear precisely how these γ-secretase modulators (GSMs) act to preferentially spare Aβ40 production as well as Notch processing and signaling. In an effort to determine the substrate requirements in NSAID/GSM activity, we determined the effects of sulindac sulfide and flurbiprofen on γ-cleavage of artificial constructs containing several γ-secretase substrates. Using FLAG-tagged constructs that expressed extracellularly truncated APP, Notch-1, or CD44, we found that these substrates have different sensitivities to sulindac sulfide. γ-Secretase cleavage of APP was altered by sulindac sulfide, but CD44 and Notch-1 were either insensitive or only minimally altered by this compound. Using chimeric APP constructs, we observed that the transmembrane domain (TMD) of APP played a pivotal role in determining drug sensitivity. Substituting the APP TMD with that of APLP2 retained the sensitivity to γ-cleavage modulation, but replacing TMDs from Notch-1 or ErbB4 rendered the resultant molecules insensitive to drug treatment. Specifically, the GXXXG motif within APP appeared to be critical to GSM activity. Consequently, the modulatory effects on γ-cleavage appears to be substrate-dependent. We hypothesize that the substrate present in the γ-secretase complex influences the conformation of the complex so that the binding site of GSMs is either stabilized or less favorable to influence the cleavage of the respective substrates.  相似文献   
89.
γ-Secretase is a multiprotein intramembrane cleaving aspartyl protease (I-CLiP) that catalyzes the final cleavage of the amyloid β precursor protein (APP) to release the amyloid β peptide (Aβ). Aβ is the primary component of senile plaques in Alzheimer's disease (AD), and its mechanism of production has been studied intensely. γ-Secretase executes multiple cleavages within the transmembrane domain of APP, with cleavages producing Aβ and the APP intracellular domain (AICD), referred to as γ and ε, respectively. The heterogeneous nature of the γ cleavage that produces various Aβ peptides is highly relevant to AD, as increased production of Aβ 1-42 is genetically and biochemically linked to the development of AD. We have identified an amino acid in the juxtamembrane region of APP, lysine 624, on the basis of APP695 numbering (position 28 relative to Aβ) that plays a critical role in determining the final length of Aβ peptides released by γ-secretase. Mutation of this lysine to alanine (K28A) shifts the primary site of γ-secretase cleavage from 1-40 to 1-33 without significant changes to ε cleavage. These results further support a model where ε cleavage occurs first, followed by sequential proteolysis of the remaining transmembrane fragment, but extend these observations by demonstrating that charged residues at the luminal boundary of the APP transmembrane domain limit processivity of γ-secretase.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号