首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   41篇
  2017年   6篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   11篇
  2009年   6篇
  2008年   7篇
  2007年   4篇
  2006年   9篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   10篇
  2001年   15篇
  2000年   10篇
  1999年   8篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   10篇
  1991年   13篇
  1990年   10篇
  1989年   12篇
  1988年   11篇
  1987年   7篇
  1986年   7篇
  1985年   12篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   8篇
  1977年   8篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   6篇
  1970年   2篇
  1969年   4篇
  1967年   6篇
  1966年   3篇
  1965年   2篇
排序方式: 共有346条查询结果,搜索用时 218 毫秒
101.
Development of the entomopathogenic nematode Heterorhabditis bacteriophora strain HP88 was studied in vivo with larvae of the greater wax moth, Galleria mellonella, as host and in vitro. At 25 C in vivo, the duration of the life cycle from egg hatch to egg hatch was 96 hours. Juvenile development took 48 hours, with the duration of each juvenile stage ranging from 8 to 12 hours. Under crowded conditions, development proceeded to the infective juvenile (IJ) stage instead of the third juvenile stage (J3). Life-cycle duration and proportion of the various developmental stages in the population were similar in in vitro and in vivo cultures. When in vivo or in vitro development was initiated from the IJ stage, only hermaphrodites developed in the first generation and males appeared only in the second generation. The average (±SD) number of progeny per hermaphrodite was 243 ± 98. The ratio of males to hermaphrodites in the second generation was 1:9.4 ± 6.8.  相似文献   
102.
Detection of methylated asparagine and glutamine residues in polypeptides   总被引:1,自引:0,他引:1  
A residue of gamma-N-methylasparagine (gamma-NMA) is found at position beta-72 of many phycobiliproteins. delta-N-Methylglutamine is present in some bacterial ribosomal proteins. gamma-NMA was synthesized by reacting the omega-methyl ester of aspartate with methylamine and delta-N-methylglutamine by reaction of pyroglutamate with methylamine. These derivatives and the omega-methyl esters of aspartate and glutamate were characterized by melting point, by thin-layer chromatography, by amino acid analysis, by NMR spectroscopy, and after conversion to the phenylthiohydantoin (PTH) derivative. The gamma-NMA residues in peptides from allophycocyanin, C-phycocyanin, and B-phycoerythrin were stable under the conditions of automated sequential gas-liquid phase Edman degradation. On HPLC, PTH-gamma-NMA co-eluted with PTH-serine and was accompanied by a minor component eluting just prior to dimethylphenylthiourea. Similar results were obtained on manual derivatization of synthetic gamma-NMA to prepare the PTH derivative. The PTH-delta-N-methylglutamine standard eluted near the position of dimethylphenylthiourea under the usual conditions employed for the identification of PTH-amino acid derivatives in automated protein sequencing.  相似文献   
103.
The isoform pattern of protein kinase C (PKC) was examined in wild-type and Adriamycin-resistant (HL-60/AR) HL-60 leukemia cells. Analyses were carried out by immunoblotting with mouse monoclonal antibodies against PKC-alpha and PKC-beta and a rabbit polyclonal antibody against the variable (V3) region of PKC-gamma. HL-60/AR cells contained an equivalent level of PKC-alpha and a lower amount of PKC-beta than HL-60 cells. In contrast, only HL-60/AR cells contained PKC-gamma. These results indicate that the regulation of this family of isoenzymes is altered in drug-resistant cells.  相似文献   
104.
Triplex-forming oligonucleotides (TFOs) have the potential to serve as gene therapeutic agents on the basis of their ability to mediate site-specific genome modification via induced recombination. However, high-affinity triplex formation is limited to polypurine/polypyrimidine sites in duplex DNA. Because of this sequence restriction, careful analysis is needed to identify suitable TFO target sites within or near genes of interest. We report here an examination of two key parameters which influence the efficiency of TFO-induced recombination: (1) binding affinity of the TFO for the target site and (2) the distance between the target site and the mutation to be corrected. To test the influence of binding affinity, we compared induced recombination in human cell-free extracts by a series of G-rich oligonucleotides with an identical base composition and an increasing number of mismatches in the third strand binding code. As the number of mismatches increased and, therefore, binding affinity decreased, induced recombination frequency also dropped. There was an apparent threshold at an equilibrium dissociation constant (K(d)) of 1 x 10(-)(7) M. In addition, TFO chemical modification with N,N-diethylethylenediamine (DEED) internucleoside linkages to confer improved binding was found to yield increased levels of induced recombination. To test the ability of triplex formation to induce recombination at a distance, episomal targets with informative reporter genes were constructed to contain polypurine TFO target sites at varying distances from the mutations to be corrected. TFO-induced recombination in mammalian cells between a plasmid vector and a donor oligonucleotide was detected at distances ranging from 24 to 750 bp. Together, these results indicate that TFO-induced recombination requires high-affinity binding but can affect sites hundreds of base pairs away from the position of triplex formation.  相似文献   
105.
Glazunov AV  Glazer VM 《Genetika》2000,36(12):1629-1633
In our previous works, a mutation in the RAD57 gene was shown to induce the plasmid DNA double-strand gap (DSG) repair via a special recombinational repair mechanism: homolog-dependent ligation responsible for reuniting disrupted plasmid ends without reconstructing the sequence lost because of the DSG. In this work, the role of the RAD55 gene in the plasmid DNA DSG repair was studied. A cold-sensitive rad55-3 mutation markedly decreased the precision of plasmid DNA DSG repair under conditions of restrictive temperature (23 degrees C): only 5-7% of plasmids can repair DSG, whereas under permissive conditions (36 degrees C), DSGs were repaired in approximately 50% of the cells. In the cold-sensitive mutation rad57-1, the proportion of plasmids in which DSGs were repaired was nearly the same under both permissive and restrictive conditions (5-10%). The results indicate that a disturbance in the function of the RAD55 gene, as in the RAD57 gene, leads to a drastic increase in the contribution of homolog-dependent ligation to the repair of double-strand DNA breaks.  相似文献   
106.
Triplex-induced recombination and repair in the pyrimidine motif   总被引:2,自引:2,他引:0  
Triplex-forming oligonucleotides (TFOs) bind DNA in a sequence-specific manner at polypurine/polypyrimidine sites and mediate targeted genome modification. Triplexes are formed by either pyrimidine TFOs, which bind parallel to the purine strand of the duplex (pyrimidine, parallel motif), or purine TFOs, which bind in an anti-parallel orientation (purine, anti-parallel motif). Both purine and pyrimidine TFOs, when linked to psoralen, have been shown to direct psoralen adduct formation in cells, leading to mutagenesis or recombination. However, only purine TFOs have been shown to mediate genome modification without the need for a targeted DNA-adduct. In this work, we report the ability of a series of pyrimidine TFOs, with selected chemical modifications, to induce repair and recombination in two distinct episomal targets in mammalian cells in the absence of any DNA-reactive conjugate. We find that TFOs containing N3′→P5′ phosphoramidate (amidate), 5-(1-propynyl)-2′-deoxyuridine (pdU), 2′-O-methyl-ribose (2′-O-Me), 2′-O-(2-aminoethyl)-ribose, or 2′-O, 4′-C-methylene bridged or locked nucleic acid (LNA)-modified nucleotides show substantially increased formation of non-covalent triplexes under physiological conditions compared with unmodified DNA TFOs. However, of these modified TFOs, only the amidate and pdU-modified TFOs mediate induced recombination in cells and stimulate repair in cell extracts, at levels comparable to those seen with purine TFOs in similar assays. These results show that amidate and pdU-modified TFOs can be used as reagents to stimulate site-specific gene targeting without the need for conjugation to DNA-reactive molecules. By demonstrating the potential for induced repair and recombination with appropriately modified pyrimidine TFOs, this work expands the options available for triplex-mediated gene targeting.  相似文献   
107.
The entire pathway for the biosynthesis of the phycobiliviolin-bearing His-tagged holo-alpha subunit of the cyanobacterial photosynthetic accessory protein phycoerythrocyanin was reconstituted in Escherichia coli. Cyanobacterial genes encoding enzymes required for the conversion of heme to 3Z-phycocyanobilin, a precursor of phycobiliviolin (namely, heme oxygenase 1 and 3Z-phycocyanobilin:ferredoxin oxidoreductase), were expressed from a plasmid under the control of the hybrid trp-lac (trc) promoter. Genes for the apo-phycoerythrocyanin alpha subunit (pecA) and the heterodimeric lyase/isomerase (pecE and pecF), which catalyzes both the covalent attachment of phycocyanobilin and its concurrent isomerization to phycobiliviolin, were expressed from the trc promoter on a second plasmid. Upon induction, recombinant E. coli used endogenous heme to produce holo-PecA with absorbance and fluorescence properties similar to those of the same protein produced in cyanobacteria. About two-thirds of the apo-PecA was converted to holo-PecA. No significant bilin addition took place in a similarly engineered E. coli strain that lacks pecE and pecF. By using immobilized metal affinity chromatography, both apo-PecA and holo-PecA were isolated as ternary complexes with PecE and PecF. The identities of all three components in the ternary complexes were established unambiguously by protein and tryptic peptide analyses performed by matrix-assisted laser desorption ionization-time of flight mass spectrometry.  相似文献   
108.
Fluorescence energy transfer (ET) primers and terminators are the reagents of choice for multiplex DNA sequencing and analysis. We present here the design, synthesis and evaluation of a four-color set of ET cassettes, fluorescent labeling reagents that can be quantitatively coupled to a thiol-activated target through a disulfide exchange reaction. The ET cassette consists of a sugar-phosphate spacer with a FAM donor at the 3'-end, an acceptor linked to a modified T-base at the 5'-end of the spacer and a mixed disulfide for coupling to a thiol at the 5'-end. The acceptor dye emission intensities of ET labeled primers produced in this manner are comparable to commercial ET primers. The utility of our ET cassette-labeled primers is demonstrated by performing four-color capillary electrophoresis sequencing with the M13(-21)forward primer and by generating and analyzing a set of single-nucleotide-polymorphism-specific PCR amplicons.  相似文献   
109.
110.
Chicken v-erB probe was used to isolate a unique clone of Drosophila melanogaster DNA. It maps by in situ hybridization to position 57F on chromosome 2. A complete nucleotide sequence of the coding region has been obtained. The putative Drosophila EGF receptor protein is similar in overall organization to the human homolog. It shows three distinct domains: an extracellular putative EGF binding domain, a hydrophobic transmembrane region, and a cytoplasmic kinase domain. The overall amino acid homology is 41% in the extracellular domain and 55% in the kinase domain. Two cysteine-rich regions, a hallmark of the human ligand-binding domain, have also been conserved. Fusion of the coding sequences of the kinase and extracellular domains generating the receptor gene must have occurred over 800 million years ago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号