首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1547篇
  免费   148篇
  2024年   1篇
  2023年   12篇
  2022年   7篇
  2021年   85篇
  2020年   50篇
  2019年   67篇
  2018年   70篇
  2017年   50篇
  2016年   74篇
  2015年   118篇
  2014年   114篇
  2013年   124篇
  2012年   139篇
  2011年   137篇
  2010年   76篇
  2009年   55篇
  2008年   96篇
  2007年   81篇
  2006年   52篇
  2005年   58篇
  2004年   54篇
  2003年   43篇
  2002年   38篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   12篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1695条查询结果,搜索用时 609 毫秒
131.
Water channels AQP7 and AQP8 may be involved in transcellular water movement in the small intestine. We show that both AQP7 and AQP8 mRNA are expressed in rat small intestine. Immunoblot and immunohistochemistry experiments demonstrate that AQP7 and AQP8 proteins are present in the apical brush border membrane of intestinal epithelial cells. We investigated the effect of several metals and pH on the osmotic water permeability (Pf) of brush border membrane vesicles (BBMVs) and of AQP7 and AQP8 expressed in a cell line. Hg2+, Cu2+, and Zn2+ caused a significant decrease in the BBMV Pf, whereas Ni2+ and Li+ had no effect. AQP8-transfected cells showed a reduction in Pf in the presence of Hg2+ and Cu2+, whereas AQP7-transfected cells were insensitive to all tested metals. The Pf of both BBMVs and cells transfected with AQP7 and AQP8 was not affected by pH changes within the physiological range, and the Pf of BBMVs alone was not affected by phlorizin or amiloride. Our results indicate that AQP7 and AQP8 may play a role in water movement via the apical domain of small intestine epithelial cells. AQP8 may contribute to the water-imbalance-related clinical symptoms apparent after ingestion of high doses of Hg2+ and Cu2+.  相似文献   
132.

Background

Genomic deletions and duplications are important in the pathogenesis of diseases, such as cancer and mental retardation, and have recently been shown to occur frequently in unaffected individuals as polymorphisms. Affymetrix GeneChip whole genome sampling analysis (WGSA) combined with 100 K single nucleotide polymorphism (SNP) genotyping arrays is one of several microarray-based approaches that are now being used to detect such structural genomic changes. The popularity of this technology and its associated open source data format have resulted in the development of an increasing number of software packages for the analysis of copy number changes using these SNP arrays.

Results

We evaluated four publicly available software packages for high throughput copy number analysis using synthetic and empirical 100 K SNP array data sets, the latter obtained from 107 mental retardation (MR) patients and their unaffected parents and siblings. We evaluated the software with regards to overall suitability for high-throughput 100 K SNP array data analysis, as well as effectiveness of normalization, scaling with various reference sets and feature extraction, as well as true and false positive rates of genomic copy number variant (CNV) detection.

Conclusion

We observed considerable variation among the numbers and types of candidate CNVs detected by different analysis approaches, and found that multiple programs were needed to find all real aberrations in our test set. The frequency of false positive deletions was substantial, but could be greatly reduced by using the SNP genotype information to confirm loss of heterozygosity.  相似文献   
133.

Background

although preoperative RT (Radiation Therapy) is becoming the preferred approach for combined treatment of locally advanced rectal adenocarcinoma, no regimen can be now considered as a standard. Since the toxicity of preoperative RT isn't yet completely known, and the advantages of preoperative RT could be counterbalanced by increased postoperative morbidity and mortality, a monocentre series of preoperative bifractionated accelerated RT was retrospectively reviewed to clarify toxicity and outcomes after a prolonged follow up.

Methods

patients were screened following these eligibility criteria: histology-proven adenocarcinoma of the rectum; distal tumour extent at 12 cm or less from the anal verge; clinical stage T3–4/anyN, or anyT/N1–2; ECOG Performance Status 0–2. A total dose of 41.6 Gy (26 twice daily fractions of 1.6 Gy) was delivered. Surgery was carried out 17 ± 2 days after RT completion, adopting the total mesorectal excision technique.

Results

24 men and 23 women were enrolled; median age was 55 years (r.: 39–77). Twenty-eight patients were stage II and 19 stage III. 9 patients suffered from a recurrent tumour. 2 patients experienced a severe grade 4 gastrointestinal toxicity (a colo-vaginal fistula and an intestinal obstruction, both successfully treated). Operative mortality was nil; postoperative early complications occurred in 13 cases; mean length of hospital stay was 15 days. After a mean follow up of 44 months (r.: 18–84) 8 patients had deceased for recurrent disease, 15 were alive with a disease progression (2 pelvic recurrences and 13 pure distant deposits) and 24 were alive, without disease. The 5-year actuarial overall survival was 74.2%, the disease-free survival 62.9% and the regional control rate 84.7%. Long-term complications included 1 case of radiation enteritis requiring surgery, 2 cases of anastomotic stricture and 3 cases of bladder incontinence.

Conclusion

bifractionated accelerated RT administered in the preoperative setting to patients bearing locally advanced rectal cancer is reliable and safe, as its immediate and late toxicity (mainly infectious) is acceptably low and long-term survivals are achievable. These findings support the increasing use of preoperative RT for treatment of this malignancy in experienced centres. Ongoing multicentric trials are expected to address still unsolved issues, including the benefit of CT adjunct to preoperative RT.
  相似文献   
134.

Background

Enterovirus 71 (EV71) is a major causative viral agent responsible for large outbreaks of hand, foot and mouth disease (HFMD), a common rash illness in children and infants. There is no effective antiviral treatment for severe EV71 infections and no vaccine is available. The objectives of this study were to design and construct a DNA vaccine against Enterovirus 71 using the viral capsid protein (VP1) gene of EV71 and to verify the functionality of the DNA vaccine in vitro and in vivo.

Methods

The VP1 gene of EV71 from two local outbreak isolates were amplified using PCR and then inserted into a eukaryotic expression vector, pVAX1. The 3.9 kb recombinant constructs were transformed into competent E. coli cells and the positive clones were screened and selected using PCR analysis, restriction digestion analysis and DNA sequencing. The constructs were then tested for protein expression in Vero cells. Subsequently, in the in vivo studies, female Balb/c mice were immunized with the DNA vaccine constructs. Enzyme Linked Immunosorbent Assay (ELISA) and virus neutralizing assay were performed to detect the presence of anti-VP1 IgG in mice and its neutralizing effect against the EV71.

Results

The pVAX1 vector was successfully cloned with the VP1 gene from each of the isolate (S2/86/1 and 410/4) in the correct orientation and in-frame. The DNA vaccine constructs with the VP1 gene were shown to be expressed in a cell-free in vitro expression system. The VP1 protein was successfully expressed in the mammalian cell line and was detected using RT-PCR, Indirect Immunofluorescence Assay (IFA) and western blotting. The anti-VP1 IgG levels in mice immunized with the DNA vaccine constructs increased after the first booster but declined following the second booster. The anti-VP1 IgG in the mice immunized with the DNA vaccine constructs exhibited neutralising activity against EV71.

Conclusion

The promising results obtained in the present study have prompted further testing to improve the expression and immunogenicity of this potential EV71 DNA vaccine.  相似文献   
135.
136.
Conventional signals are maintained via social costs and commonly used in the animal kingdom to assess conspecifics' agonistic ability during disputes over resources. In the last decade, some experimental studies reported the existence of visual conventional signals in several social wasp species, being good rank predictors in different social contexts. Females of the social wasp Polistes gallicus do not cooperate to start nests but they often try to usurp conspecific nests. Here, we showed that the reproductive females of this species have variable facial colour patterns that function as conventional signals. Wasps with larger black spots on their clypeus are more likely to successfully overwinter, are larger, and are better at fighting and at holding a nest. Furthermore, in field experiments, resident foundresses rely on facial pattern to assess usurpers' fighting abilities, modulating their defence reaction accordingly, so that rivals with larger black spot receive more aggression than rivals with smaller or no black spots on the clypeus. Our study reveals that visual recognition abilities are widespread among paper wasps that, regardless of their social biology, face similar selective pressures within competitive contexts.  相似文献   
137.
The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.  相似文献   
138.
Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5′-to-3′ polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.  相似文献   
139.
140.
The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2AR) represent major non‐dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6‐hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2‐methyl‐6‐(phenylethynyl)pyridine (MPEP), and two A2AR antagonists, (E)‐phosphoric acid mono‐[3‐[8‐[2‐(3‐methoxyphenyl)vinyl]‐7‐methyl‐2,6‐dioxo‐1‐prop‐2‐ynyl‐1,2,6,7‐tetrahydropurin‐3‐yl]propyl] (MSX‐3) and 8‐ethoxy‐9‐ethyladenine (ANR 94). Chronic treatment with MPEP or MSX‐3 alone, but not with ANR 94, reduced the toxin‐induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX‐3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX‐3 given alone significantly potentiated l ‐DOPA‐induced turning behavior. Combination of either A2AR antagonists with MPEP synergistically increased L‐DOPA‐induced turning. This effect was dose‐dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co‐treatment with A2AR and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non‐dopaminergic PD treatment using low drug concentration and establishes the basis for in‐depth studies to identify optimal doses at which these drugs reach highest efficacy.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号